Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (348)
  • Open Access

    ARTICLE

    Multi-Material Topology Optimization of 2D Structures Using Convolutional Neural Networks

    Jiaxiang Luo1,2, Weien Zhou2,3, Bingxiao Du1,*, Daokui Li1, Wen Yao2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1919-1947, 2024, DOI:10.32604/cmes.2024.048118

    Abstract In recent years, there has been significant research on the application of deep learning (DL) in topology optimization (TO) to accelerate structural design. However, these methods have primarily focused on solving binary TO problems, and effective solutions for multi-material topology optimization (MMTO) which requires a lot of computing resources are still lacking. Therefore, this paper proposes the framework of multiphase topology optimization using deep learning to accelerate MMTO design. The framework employs convolutional neural network (CNN) to construct a surrogate model for solving MMTO, and the obtained surrogate model can rapidly generate multi-material structure topologies… More >

  • Open Access

    ARTICLE

    Multimodal Deep Neural Networks for Digitized Document Classification

    Aigerim Baimakhanova1,*, Ainur Zhumadillayeva2, Bigul Mukhametzhanova3, Natalya Glazyrina2, Rozamgul Niyazova2, Nurseit Zhunissov1, Aizhan Sambetbayeva4

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 793-811, 2024, DOI:10.32604/csse.2024.043273

    Abstract As digital technologies have advanced more rapidly, the number of paper documents recently converted into a digital format has exponentially increased. To respond to the urgent need to categorize the growing number of digitized documents, the classification of digitized documents in real time has been identified as the primary goal of our study. A paper classification is the first stage in automating document control and efficient knowledge discovery with no or little human involvement. Artificial intelligence methods such as Deep Learning are now combined with segmentation to study and interpret those traits, which were not… More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Method Based on Feature Graph and Multiple Attention Mechanisms

    Zhenxiang He*, Zhenyu Zhao, Ke Chen, Yanlin Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3023-3045, 2024, DOI:10.32604/cmc.2024.050281

    Abstract The fast-paced development of blockchain technology is evident. Yet, the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem. Conventional smart contract vulnerability detection primarily relies on static analysis tools, which are less efficient and accurate. Although deep learning methods have improved detection efficiency, they are unable to fully utilize the static relationships within contracts. Therefore, we have adopted the advantages of the above two methods, combining feature extraction mode of tools with deep learning techniques. Firstly, we have constructed corresponding feature extraction mode for… More >

  • Open Access

    ARTICLE

    A Novel Approach to Energy Optimization: Efficient Path Selection in Wireless Sensor Networks with Hybrid ANN

    Muhammad Salman Qamar1,*, Ihsan ul Haq1, Amil Daraz2, Atif M. Alamri3, Salman A. AlQahtani4, Muhammad Fahad Munir1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2945-2970, 2024, DOI:10.32604/cmc.2024.050168

    Abstract In pursuit of enhancing the Wireless Sensor Networks (WSNs) energy efficiency and operational lifespan, this paper delves into the domain of energy-efficient routing protocols. In WSNs, the limited energy resources of Sensor Nodes (SNs) are a big challenge for ensuring their efficient and reliable operation. WSN data gathering involves the utilization of a mobile sink (MS) to mitigate the energy consumption problem through periodic network traversal. The mobile sink (MS) strategy minimizes energy consumption and latency by visiting the fewest nodes or pre-determined locations called rendezvous points (RPs) instead of all cluster heads (CHs). CHs… More >

  • Open Access

    ARTICLE

    Model Agnostic Meta-Learning (MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks

    Yasir Maqsood1, Syed Muhammad Usman1,*, Musaed Alhussein2, Khursheed Aurangzeb2,*, Shehzad Khalid3, Muhammad Zubair4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2795-2811, 2024, DOI:10.32604/cmc.2024.049410

    Abstract Wheat is a critical crop, extensively consumed worldwide, and its production enhancement is essential to meet escalating demand. The presence of diseases like stem rust, leaf rust, yellow rust, and tan spot significantly diminishes wheat yield, making the early and precise identification of these diseases vital for effective disease management. With advancements in deep learning algorithms, researchers have proposed many methods for the automated detection of disease pathogens; however, accurately detecting multiple disease pathogens simultaneously remains a challenge. This challenge arises due to the scarcity of RGB images for multiple diseases, class imbalance in existing… More >

  • Open Access

    ARTICLE

    MoBShield: A Novel XML Approach for Securing Mobile Banking

    Saeed Seraj1, Ali Safaa Sadiq1,*, Omprakash Kaiwartya1, Mohammad Aljaidi2, Alexandros Konios1, Mohammed Ali3, Mohammed Abazeed3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2123-2149, 2024, DOI:10.32604/cmc.2024.048914

    Abstract Mobile banking security has witnessed significant R&D attention from both financial institutions and academia. This is due to the growing number of mobile baking applications and their reachability and usefulness to society. However, these applications are also attractive prey for cybercriminals, who use a variety of malware to steal personal banking information. Related literature in mobile banking security requires many permissions that are not necessary for the application’s intended security functionality. In this context, this paper presents a novel efficient permission identification approach for securing mobile banking (MoBShield) to detect and prevent malware. A permission-based… More >

  • Open Access

    ARTICLE

    Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction

    Chuyuan Wei*, Jinzhe Li, Zhiyuan Wang, Shanshan Wan, Maozu Guo

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3299-3314, 2024, DOI:10.32604/cmc.2024.047811

    Abstract Deep neural network-based relational extraction research has made significant progress in recent years, and it provides data support for many natural language processing downstream tasks such as building knowledge graph, sentiment analysis and question-answering systems. However, previous studies ignored much unused structural information in sentences that could enhance the performance of the relation extraction task. Moreover, most existing dependency-based models utilize self-attention to distinguish the importance of context, which hardly deals with multiple-structure information. To efficiently leverage multiple structure information, this paper proposes a dynamic structure attention mechanism model based on textual structure information, which deeply… More >

  • Open Access

    ARTICLE

    Alternative Method of Constructing Granular Neural Networks

    Yushan Yin1, Witold Pedrycz1,2, Zhiwu Li1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 623-650, 2024, DOI:10.32604/cmc.2024.048787

    Abstract Utilizing granular computing to enhance artificial neural network architecture, a new type of network emerges—the granular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability to process both numerical and granular data, leading to improved interpretability. This paper proposes a novel design method for constructing GNNs, drawing inspiration from existing interval-valued neural networks built upon NNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzy numbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizes a uniform distribution of information More >

  • Open Access

    ARTICLE

    Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning

    Aizaz Ali1, Maqbool Khan1,2, Khalil Khan3, Rehan Ullah Khan4, Abdulrahman Aloraini4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 713-733, 2024, DOI:10.32604/cmc.2024.048712

    Abstract Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understanding public opinion and user sentiment across diverse languages. While numerous scholars conduct sentiment analysis in widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grappling with resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language, characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu, Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguistic features,… More >

  • Open Access

    ARTICLE

    A Study on Enhancing Chip Detection Efficiency Using the Lightweight Van-YOLOv8 Network

    Meng Huang, Honglei Wei*, Xianyi Zhai

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 531-547, 2024, DOI:10.32604/cmc.2024.048510

    Abstract In pursuit of cost-effective manufacturing, enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips. To ensure consistent chip orientation during packaging, a circular marker on the front side is employed for pin alignment following successful functional testing. However, recycled chips often exhibit substantial surface wear, and the identification of the relatively small marker proves challenging. Moreover, the complexity of generic target detection algorithms hampers seamless deployment. Addressing these issues, this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips, termed Van-YOLOv8. Initially, to alleviate the influence of diminutive, low-resolution… More >

Displaying 1-10 on page 1 of 348. Per Page