Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (84)
  • Open Access

    ARTICLE

    Indirect RBFN Method with Thin Plate Splines for Numerical Solution of Differential Equations

    N. Mai-Duy, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 85-102, 2003, DOI:10.3970/cmes.2003.004.085

    Abstract This paper reports a mesh-free Indirect Radial Basis Function Network method (IRBFN) using Thin Plate Splines (TPSs) for numerical solution of Differential Equations (DEs) in rectangular and curvilinear coordinates. The adjustable parameters required by the method are the number of centres, their positions and possibly the order of the TPS. The first and second order TPSs which are widely applied in numerical schemes for numerical solution of DEs are employed in this study. The advantage of the TPS over the multiquadric basis function is that the former, with a given order, does not contain the… More >

  • Open Access

    ARTICLE

    Numerical Solution of Plane Elasticity Problems with the Cell Method

    F. Cosmi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.3, pp. 365-372, 2001, DOI:10.3970/cmes.2001.002.365

    Abstract The aim of this paper is to present a methodology for solving the plane elasticity problem using the Cell Method. It is shown that with the use of a parabolic interpolation in a vectorial problem, a convergence rate of 3.5 is obtained. Such a convergence rate compares with, or is even better than, the one obtained with FEM with the same interpolation – depending on the integration technique used by the FEM application. The accuracy of the solution is also comparable or better. More >

  • Open Access

    ARTICLE

    Numerical Solution of Nonlinear Exterior Wave Problems Using Local Absorbing Boundary Conditions

    Igor Patlashenko1, Dan Givoli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 61-70, 2000, DOI:10.3970/cmes.2000.001.221

    Abstract The method of Absorbing Boundary Conditions (ABCs) is considered for the numerical solution of a class of nonlinear exterior wave scattering problems. Recently, a scheme based on the exact nonlocal Dirichlet-to-Neumann (DtN) ABC has been proposed for such problems. Although this method is very accurate, it is also highly expensive computationally. In this paper, the nonlocal ABC is replaced by a low-order local ABC, which is obtained by localizing the DtN condition in a certain "optimal'' way. The performance of the new local scheme is compared to that of the nonlocal scheme via numerical experiments More >

  • Open Access

    ARTICLE

    A Meshless Method for the Numerical Solution of the 2- and 3-D Semiconductor Poisson Equation

    C.J. Wordelman, N.R. Aluru, U. Ravaioli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 121-126, 2000, DOI:10.3970/cmes.2000.001.121

    Abstract This paper describes the application of the meshless Finite Point (FP) method to the solution of the nonlinear semiconductor Poisson equation. The FP method is a true meshless method which uses a weighted least-squares fit and point collocation. The nonlinearity of the semiconductor Poisson equation is treated by Newton-Raphson iteration, and sparse matrices are employed to store the shape function and coefficient matrices. Using examples in two- and three-dimensions (2- and 3-D) for a prototypical n-channel MOSFET, the FP method demonstrates promise both as a means of mesh enhancement and for treating problems where arbitrary More >

Displaying 81-90 on page 9 of 84. Per Page