Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    ANALYTICAL STUDY OF UNSTEADY SQUEEZED FLOW OF WATER BASE CNTS NANOFLUID WITH MAGNETIC FIELD AND VARIABLE THERMAL CONDUCTIVITY OVER A STRETCHING SURFACE

    Ali Rehmana , Zabidin Salleha,* , Taza Gulb

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-7, 2020, DOI:10.5098/hmt.14.20

    Abstract This research paper explains the analytical solution unsteady squeezing flow of water based CNTs for both MWCNT and SWCNT in the presence of magnetic field and variable thermal conductivity. The given partial differential equation is converted to nonlinear ordinary differential equation by using the similarity transformation and solve by analytical method namely optimal homotopy asymptotic method (OHAM) to obtain analytical solution of the nonlinear problem which analyze the problem. The result of important parameter for both velocity and temperature profiles are plotted and discussed. The BVPh 2.0 package is used to obtain the convergence of the problem up to 25… More >

  • Open Access

    ARTICLE

    COMPREHENSIVE EXAMINATION OF THE THREE-DIMENSIONAL ROTATING FLOW OF A UCM NANOLIQUID OVER AN EXPONENTIALLY STRETCHABLE CONVECTIVE SURFACE UTILIZING THE OPTIMAL HOMOTOPY ANALYSIS METHOD

    K.V. Prasada, Hanumesh Vaidyaa,*, O. D. Makindeb , K. Vajraveluc , A. Wakifd , Hussain Bashaa

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-12, 2020, DOI:10.5098/hmt.14.11

    Abstract This article explores the three-dimensional (3D) rotating flow of Upper Convected Maxwell (UCM) nanoliquid over an exponentially stretching sheet with a convective boundary condition and zero mass flux for the nanoparticles concentration. The impacts of velocity slip and hall current are being considered. The suitable similarity transformations are employed to reduce the governing partial differential equations into ordinary ones. These systems of equations are highly non-linear, coupled and in turn solved by an efficient semi-analytical scheme known as optimal homotopy analysis method (OHAM). The effects of various physical constraints on velocity, temperature, and concentration fields are analyzed graphically and discussed… More >

  • Open Access

    ARTICLE

    Theoretical Investigation of Two-Dimensional Nonlinear Radiative Thermionics in Nano-MHD for Solar Insolation: A Semi-Empirical Approach

    Usman Inayat1,*, Shaukat Iqbal1, Tareq Manzoor2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 751-776, 2022, DOI:10.32604/cmes.2022.018665

    Abstract In this contemporary study, theoritical investigation of nanofluidic model is thought-out. Two-dimensional nanomaterials based mixed flow is considered here. Convective solar radiative heat transport properties have been investigated over a nonlinearly stretched wall in the presence of magneto-hydrodynamic (MHD), by innovative application of semi analytical “optimal homotopy asymptotic method (OHAM)”. OHAM does not require any discretization, linearization and small parameter assumption. OHAM describes extremely precise order solutions without the need of computing further higher order terms, therefore, fast convergence is observed. Nanofluidic governing model is transformed into system of ordinary differential equations (ODEs) by exploitation of similarity transformation. To study… More >

  • Open Access

    ARTICLE

    Performance Analysis of Magnetic Nanoparticles during Targeted Drug Delivery: Application of OHAM

    Muhammad Zafar1,#,*, Muhammad Saif Ullah1,#, Tareq Manzoor2, Muddassir Ali3, Kashif Nazar4, Shaukat Iqbal5, Habib Ullah Manzoor6, Rizwan Haider1, Woo Young Kim7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 723-749, 2022, DOI:10.32604/cmes.2022.017257

    Abstract In recent years, the emergence of nanotechnology experienced incredible development in the field of medical sciences. During the past decade, investigating the characteristics of nanoparticles during fluid flow has been one of the intriguing issues. Nanoparticle distribution and uniformity have emerged as substantial criteria in both medical and engineering applications. Adverse effects of chemotherapy on healthy tissues are known to be a significant concern during cancer therapy. A novel treatment method of magnetic drug targeting (MDT) has emerged as a promising topical cancer treatment along with some attractive advantages of improving efficacy, fewer side effects, and reduce drug dose. During… More >

  • Open Access

    ARTICLE

    Cytotoxicity assessment of a gold nanoparticle-chitosan nanocomposite as an effi cient support for cell immobilization: comparison with chitosan hydrogel and chitosan-gelatin

    Mohammad Reza RAMEZANI1, Hossein NADERI-MANESH1, *, Hossain-Ali RAFIEEPOUR2

    BIOCELL, Vol.38, No.1, pp. 11-16, 2014, DOI:10.32604/biocell.2014.38.011

    Abstract Cell-based biosensors have become a research hotspot in the biosensors and bioelectronics fields. The main feature of cell-based biosensors is immobilization of living cells on the surface of transducers. Different types of polymers which are used as scaffolds for cell growth should be biocompatible and should have reactive functional groups for further attachment of biomolecules. In this work, cell attachment and proliferation on chitosan hydrogel, chitosan-gelatin and gold nanoparticle-chitosan nanocomposite membranes was studied. Characterization of the membranes was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Cytotoxicity assessment on HEK293 cells was carried out for all… More >

Displaying 1-10 on page 1 of 5. Per Page