Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (619)
  • Open Access

    ARTICLE

    Invariant Based Transversely-Isotropic Material and Failure Model for Fiber-Reinforced Polymers

    M. Vogler1, G. Ernst1, R. Rolfes1

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 25-50, 2010, DOI:10.3970/cmc.2010.016.025

    Abstract In this article, a constitutive formulation of a transversely-isotropic material and failure model for fiber-reinforced polymers is presented comprising pre-failure material nonlinearities, a novel invariant based quadratic failure criterion (IQC) as well as post failure material softening. The failure surface of the IQ criterion is assumed to take the influence of triaxiality on fracture into account. Further, a distinction between fiber failure and inter-fiber failure is conducted. Material softening is governed by a fracture energy formulation and the introduction of an internal length. The constitutive model is implemented into a programming user interface of the commercial finite element program Abaqus.… More >

  • Open Access

    ARTICLE

    Pressure-Force Transformation for Transient Wear Simulation in Two-Dimensional Sliding Contacts

    Chen Y J1,2, Huber N2,3

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 1-24, 2010, DOI:10.3970/cmc.2010.016.001

    Abstract An efficient wear integration algorithm is crucial for the simulation of wear in complex transient contact situations. By rewriting Archard's wear law for two dimensional problems, the wear integration can be replaced by the total contact force. This avoids highly resolved simulations in time and space, so that the proposed method allows a significant acceleration of wear simulations. All quantities, including the average contact velocity, slip rate and total contact force, which are required for the pressure-force transformation, can be determined from geometric and motion analysis, or alternatively, from Finite Element simulations. The proposed CForce method has been implemented into… More >

  • Open Access

    ARTICLE

    A General Magnetoelastic Coupling Theory of Deformable Magnetized Medium Including Magnetic Forces and Magnetostriction Effects

    Hao-Miao Zhou1,2, You-He Zhou1, Xiao-Jing Zheng1, Jing Wei3

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 237-250, 2009, DOI:10.3970/cmc.2009.012.237

    Abstract From the viewpoint of energy, a general magnetoelastic coupling theory including magnetic forces and magnetostriction effects is proposed for deformable magnetized medium. Firstly, a Taylor series expansion of independent variables of stress and magnetization in the elastic Gibbs free energy function is applied to obtain a polynomial expression; and then based on the magnetoelastic coupling mechanism, appropriate transcendental functions are substituted for some terms in a polynomial constitutive relationship derived by way of substituting the polynomial Gibbs free energy function in thermodynamic equations to achieve a more compact magnetostrictive constitutive relationship. The numerical simulation exhibits that the predicted magnetostrictive strain… More >

  • Open Access

    ARTICLE

    A Computational Approach to Investigate Electromagnetic Shielding Effectiveness of Steel Fiber-Reinforced Mortar

    S.H. Kwon1, H.K. Lee2

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 197-222, 2009, DOI:10.3970/cmc.2009.012.197

    Abstract The electromagnetic shielding effectiveness of steel fiber-reinforced mortar was numerically examined in this study. A series of numerical analysis on twenty-seven types of specimens of different diameters, lengths, and volume fractions of fibers were conducted using the FE program HFSS to investigate the effect of the dimensions of steel fibers and the amount of fibers added to the mortar on the shielding effectiveness. S-parameters of some specimens were experimentally measured by the free space method and the experimentally measured S-parameters were compared with those computed in order to verify the present numerical analysis method. It was found that smaller diameters… More >

  • Open Access

    ARTICLE

    A Direct Forcing Immersed Boundary Method Based Lattice Boltzmann Method to Simulate Flows with Complex Geometry

    Cheng-Hsiu Yang1, Cheng Chang1, Chao-An Lin1,2

    CMC-Computers, Materials & Continua, Vol.11, No.3, pp. 209-228, 2009, DOI:10.3970/cmc.2009.011.209

    Abstract In the present study, a lattice Boltzmann method based new immersed boundary technique is proposed for simulating two-dimensional viscous incompressible flows interacting with stationary and moving solid boundaries. The lattice Boltzmann method with known force field is used to simulate the flow where the complex geometry is immersed inside the computational domain. This is achieved via direct-momentum forcing on a Cartesian grid by combining "solid-body forcing" at solid nodes and interpolation on neighboring fluid nodes. The proposed method is examined by simulating decaying vortex, 2D flow over an asymmetrically placed cylinder, and in-line oscillating cylinder in a fluid at rest.… More >

  • Open Access

    ARTICLE

    Analytical Full-field Solutions of a Piezoelectric Layered Half-plane Subjected to Generalized Loadings

    Chien-Ching Ma1,2, Wen-Cha Wu2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 79-108, 2009, DOI:10.3970/cmc.2009.011.079

    Abstract The two-dimensional problem of a planar transversely isotropic piezoelectric layered half-plane subjected to generalized line forces and edge dislocations in the layer is analyzed by using the Fourier-transform method and the series expansion technique. The full-field solutions for displacements, stresses, electrical displacements and electric fields are expressed in explicit closed forms. The complete solutions consist only of the simplest solutions for an infinite piezoelectric medium with applied loadings. It is shown in this study that the physical meaning of this solution is the image method. The explicit solutions include Green's function for originally applied loadings in an infinite piezoelectric medium… More >

  • Open Access

    ARTICLE

    Multi-Scale Modelling and Simulation of Textile Reinforced Materials

    G. Haasemann1, M. Kästner1 and V. Ulbricht1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 131-146, 2006, DOI:10.3970/cmc.2006.003.131

    Abstract Novel textile reinforced composites provide an extremely high adaptability and allow for the development of materials whose features can be adjusted precisely to certain applications. A successful structural and material design process requires an integrated simulation of the material behavior, the estimation of the effective properties which need to be assigned to the macroscopic model and the resulting features of the component. In this context two efficient modelling strategies - the Binary Model (Carter, Cox, and Fleck (1994)) and the Extended Finite Element Method (X-FEM) (Moës, Cloirec, Cartraud, and Remacle (2003)) - are used to model materials which exhibit a… More >

  • Open Access

    ARTICLE

    A New Method of Controlling Shrinkage Cracking in Repaired Concrete Structures Using an Interface Layer of Carbon Fiber Reinforced Cement Mortar

    Shen Yubin1, Xie Huicai1,2, Den Wei1

    CMC-Computers, Materials & Continua, Vol.3, No.2, pp. 49-54, 2006, DOI:10.3970/cmc.2006.003.049

    Abstract Bonding an overlay of new concrete onto the damaged concrete is a usual repair method. Because of the different shrinkage rate of the new and old concrete, restrained shrinkage cracks will appear in the new concrete. The cracks will reduce durability and strength of the repaired structure. A new repair method using an interface layer of carbon fiber reinforced cement mortar between new and old concrete was developed in this paper. The new method was found to be very effective in reducing shrinkage cracking of repaired beams and slabs. Comparing with normal repaired beams, the maximum observed width of the… More >

  • Open Access

    ARTICLE

    An r-h Adaptive Strategy Based On Material Forces and Error Assessment

    R. Gangadharan1, A. Rajagopal1, S.M. Sivakumar1, 2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 229-244, 2004, DOI:10.3970/cmc.2004.001.229

    Abstract A new r-h adaptive scheme is proposed and formulated. It involves a combination of the configurational force based r-adaption with weighted Laplacian smoothing and mesh enrichment by h-refinement. A Zienkiewicz-Zhu best guess stress error estimator is used in the h-refinement strategy. The best sequence for combining the effectiveness of r- and h- adaption has been evolved at in this study. A further reduction in the potential energy and the relative error norm of the system is found to be achieved with combined r-adaption and mesh enrichment (in the form h-refinement). Numerical study confirms that the proposed combined r-h adaption is… More >

Displaying 611-620 on page 62 of 619. Per Page