Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (224)
  • Open Access

    ARTICLE

    A Knowledge-Distilled CharacterBERT-BiLSTM-ATT Framework for Lightweight DGA Detection in IoT Devices

    Chengqi Liu1, Yongtao Li2, Weiping Zou3,*, Deyu Lin4,5,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074975 - 10 February 2026

    Abstract With the large-scale deployment of the Internet of Things (IoT) devices, their weak security mechanisms make them prime targets for malware attacks. Attackers often use Domain Generation Algorithm (DGA) to generate random domain names, hiding the real IP of Command and Control (C&C) servers to build botnets. Due to the randomness and dynamics of DGA, traditional methods struggle to detect them accurately, increasing the difficulty of network defense. This paper proposes a lightweight DGA detection model based on knowledge distillation for resource-constrained IoT environments. Specifically, a teacher model combining CharacterBERT, a bidirectional long short-term memory More >

  • Open Access

    ARTICLE

    A Distributed Anonymous Reputation System for V2X Communication

    Shahidatul Sadiah1,#, Toru Nakanishi2,#,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073774 - 10 February 2026

    Abstract V2X communication enables vehicles to share real-time traffic and road-condition data, but binding messages to persistent identifiers enables location tracking. Furthermore, since forged reports from malicious vehicles can distort trust decisions and threaten road safety, privacy-preserving trust management is essential. Lu et al. previously presented BARS, an anonymous reputation mechanism founded on blockchain technology to establish a privacy-preserving trust architecture for V2X communication. In this system, reputation certificates without a vehicle identifier ensure anonymity, while two authorities jointly manage certificate issuance and reputation updates. However, the centralized certificate updates introduce scalability limitations, and the authorities… More >

  • Open Access

    ARTICLE

    Can Domain Knowledge Make Deep Models Smarter? Expert-Guided PointPillar (EG-PointPillar) for Enhanced 3D Object Detection

    Chiwan Ahn1, Daehee Kim2,*, Seongkeun Park3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073330 - 10 February 2026

    Abstract This paper proposes a deep learning-based 3D LiDAR perception framework designed for applications such as autonomous robots and vehicles. To address the high dependency on large-scale annotated data—an inherent limitation of deep learning models—this study introduces a hybrid perception architecture that incorporates expert-driven LiDAR processing techniques into the deep neural network. Traditional 3D LiDAR processing methods typically remove ground planes and apply distance- or density-based clustering for object detection. In this work, such expert knowledge is encoded as feature-level inputs and fused with the deep network, thereby mitigating the data dependency issue of conventional learning-based… More >

  • Open Access

    ARTICLE

    Metacognition Inspired Reflective Chain-of-Thought for Knowledge-Based VQA

    Zhongfan Sun, Kan Guo, Yongli Hu*, Yong Zhang

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072903 - 10 February 2026

    Abstract Knowledge-based Visual Question Answering (VQA) requires the integration of visual information with external knowledge reasoning. Existing approaches typically retrieve information from external corpora and rely on pretrained language models for reasoning. However, their performance is often hindered by the limited capabilities of retrievers and the constrained size of knowledge bases. Moreover, relying on image captions to bridge the modal gap between visual and language modalities can lead to the omission of critical visual details. To address these limitations, we propose the Reflective Chain-of-Thought (ReCoT) method, a simple yet effective framework inspired by metacognition theory. ReCoT effectively activates… More >

  • Open Access

    ARTICLE

    IPKE-MoE: Mixture-of-Experts with Iterative Prompts and Knowledge-Enhanced LLM for Chinese Sensitive Words Detection

    Longcang Wang, Yongbing Gao*, Xinguang Wang, Xin Liu

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072889 - 10 February 2026

    Abstract Aiming at the problem of insufficient recognition of implicit variants by existing Chinese sensitive text detection methods, this paper proposes the IPKE-MoE framework, which consists of three parts, namely, a sensitive word variant extraction framework, a sensitive word variant knowledge enhancement layer and a mixture-of-experts (MoE) classification layer. First, sensitive word variants are precisely extracted through dynamic iterative prompt templates and the context-aware capabilities of Large Language Models (LLMs). Next, the extracted variants are used to construct a knowledge enhancement layer for sensitive word variants based on RoCBert models. Specifically, after locating variants via n-gram… More >

  • Open Access

    ARTICLE

    TSMixerE: Entity Context-Aware Method for Static Knowledge Graph Completion

    Jianzhong Chen, Yunsheng Xu, Zirui Guo, Tianmin Liu, Ying Pan*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.071777 - 10 February 2026

    Abstract The rapid development of information technology and accelerated digitalization have led to an explosive growth of data across various fields. As a key technology for knowledge representation and sharing, knowledge graphs play a crucial role by constructing structured networks of relationships among entities. However, data sparsity and numerous unexplored implicit relations result in the widespread incompleteness of knowledge graphs. In static knowledge graph completion, most existing methods rely on linear operations or simple interaction mechanisms for triple encoding, making it difficult to fully capture the deep semantic associations between entities and relations. Moreover, many methods… More >

  • Open Access

    ARTICLE

    Constraint Intensity-Driven Evolutionary Multitasking for Constrained Multi-Objective Optimization

    Leyu Zheng1, Mingming Xiao1,*, Yi Ren2, Ke Li1, Chang Sun1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072036 - 12 January 2026

    Abstract In a wide range of engineering applications, complex constrained multi-objective optimization problems (CMOPs) present significant challenges, as the complexity of constraints often hampers algorithmic convergence and reduces population diversity. To address these challenges, we propose a novel algorithm named Constraint Intensity-Driven Evolutionary Multitasking (CIDEMT), which employs a two-stage, tri-task framework to dynamically integrates problem structure and knowledge transfer. In the first stage, three cooperative tasks are designed to explore the Constrained Pareto Front (CPF), the Unconstrained Pareto Front (UPF), and the ε-relaxed constraint boundary, respectively. A CPF-UPF relationship classifier is employed to construct a problem-type-aware… More >

  • Open Access

    ARTICLE

    Task-Structured Curriculum Learning for Multi-Task Distillation: Enhancing Step-by-Step Knowledge Transfer in Language Models

    Ahmet Ezgi1, Aytuğ Onan2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071301 - 12 January 2026

    Abstract Knowledge distillation has become a standard technique for compressing large language models into efficient student models, but existing methods often struggle to balance prediction accuracy with explanation quality. Recent approaches such as Distilling Step-by-Step (DSbS) introduce explanation supervision, yet they apply it in a uniform manner that may not fully exploit the different learning dynamics of prediction and explanation. In this work, we propose a task-structured curriculum learning (TSCL) framework that structures training into three sequential phases: (i) prediction-only, to establish stable feature representations; (ii) joint prediction–explanation, to align task outputs with rationale generation; and (iii)… More >

  • Open Access

    ARTICLE

    Support Vector–Guided Class-Incremental Learning: Discriminative Replay with Dual-Alignment Distillation

    Moyi Zhang, Yixin Wang*, Yu Cheng

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071021 - 12 January 2026

    Abstract Modern intelligent systems, such as autonomous vehicles and face recognition, must continuously adapt to new scenarios while preserving their ability to handle previously encountered situations. However, when neural networks learn new classes sequentially, they suffer from catastrophic forgetting—the tendency to lose knowledge of earlier classes. This challenge, which lies at the core of class-incremental learning, severely limits the deployment of continual learning systems in real-world applications with streaming data. Existing approaches, including rehearsal-based methods and knowledge distillation techniques, have attempted to address this issue but often struggle to effectively preserve decision boundaries and discriminative features… More >

  • Open Access

    ARTICLE

    Defect Identification Method of Power Grid Secondary Equipment Based on Coordination of Knowledge Graph and Bayesian Network Fusion

    Jun Xiong*, Peng Yang, Bohan Chen, Zeming Chen

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069438 - 27 December 2025

    Abstract The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system. However, various defects could be produced in the secondary equipment during long-term operation. The complex relationship between the defect phenomenon and multi-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods, which limits the real-time and accuracy of defect identification. Therefore, a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed. The defect data of secondary equipment is… More >

Displaying 1-10 on page 1 of 224. Per Page