Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access


    Deep Learning Empowered Cybersecurity Spam Bot Detection for Online Social Networks

    Mesfer Al Duhayyim1, Haya Mesfer Alshahrani2, Fahd N. Al-Wesabi3, Mohammed Alamgeer4, Anwer Mustafa Hilal5,*, Mohammed Rizwanullah5

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6257-6270, 2022, DOI:10.32604/cmc.2022.021212

    Abstract Cybersecurity encompasses various elements such as strategies, policies, processes, and techniques to accomplish availability, confidentiality, and integrity of resource processing, network, software, and data from attacks. In this scenario, the rising popularity of Online Social Networks (OSN) is under threat from spammers for which effective spam bot detection approaches should be developed. Earlier studies have developed different approaches for the detection of spam bots in OSN. But those techniques primarily concentrated on hand-crafted features to capture the features of malicious users while the application of Deep Learning (DL) models needs to be explored. With this… More >

Displaying 11-20 on page 2 of 11. Per Page