Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20,611)
  • Open Access

    ARTICLE

    Intramyocardial Injections to De-Stiffen the Heart: A Subject-Specific in Silico Approach

    Yaghoub Dabiri1,3, Kevin L. Sack1,2, Semion Shaul1, Gabriel Acevedo-Bolton1, Jenny S. Choy3, Ghassan S. Kassab3, Julius M. Guccione1,*

    Molecular & Cellular Biomechanics, Vol.16, No.3, pp. 185-197, 2019, DOI:10.32604/mcb.2019.07364

    Abstract We hypothesized that minimally invasive injections of a softening agent at strategic locations in stiff myocardium could de-stiffen the left ventricle (LV) globally. Physics-based finite element models of the LV were created from LV echocardiography images and pressures recorded during experiments in four swine. Results confirmed animal models of LV softening by systemic agents. Regional de-stiffening of myocardium led to global de-stiffening of LV. The mathematical set up was used to design LV global de-stiffening by regional softening of myocardium. At an end diastolic pressure of 23 mmHg, when 8 ml of the free wall was covered by intramyocardial injections,… More >

  • Open Access

    ARTICLE

    A Novel Atlas-Based Strategy for Understanding Cardiac Dysfunction in Patients with Congenital Heart Disease

    Sara Salehyar1, †, Nickolas Forsch1,†,*, Kathleen Gilbert2,3, Alistair A. Young3,4, James C. Perry5, Sanjeet Hegde5, Jeffrey H. Omens1,6, Andrew D. McCulloch1,6

    Molecular & Cellular Biomechanics, Vol.16, No.3, pp. 179-183, 2019, DOI:10.32604/mcb.2019.07384

    Abstract Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease. Infants diagnosed with TOF require surgical interventions to survive into adulthood. However, as a result of postoperative structural malformations and long-term ventricular remodeling, further interventions are often required later in life. To help identify those at risk of disease progression, serial cardiac magnetic resonance (CMR) imaging is used to monitor these patients. However, most of the detailed information on cardiac shape and biomechanics contained in these large four-dimensional (4D) data sets goes unused in clinical practice for lack of efficient and comprehensive quantitative analysis tools. While… More >

  • Open Access

    ARTICLE

    Warmest Congratulations to Dr. Yuan-Cheng Fung at His Centennial Celebration

    Shu Chien*

    Molecular & Cellular Biomechanics, Vol.16, No.3, pp. 163-178, 2019, DOI:10.32604/mcb.2019.07689

    Abstract Professor Y.C. Fung has made tremendous impacts on science, engineering and humanity through his research and its applications, by setting the highest standards, through educating many students and their students, and providing his exemplary leadership. He has applied his profound knowledge and elegant analytical methods to the study of biomedical problems with rigor and excellence. He established the foundations of biomechanics in living tissues and organs. Through his vision of the power of “making models” to explain and predict biological phenomena, Dr. Fung opened up new vista for bioengineering, from organs-systems to molecules-genes, and has provided the foundation of research… More >

  • Open Access

    REVIEW

    Systems Neuroprotective Mechanisms in Ischemic Stroke

    Shu Q. Liu*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 75-85, 2019, DOI:10.32604/mcb.2019.06920

    Abstract Ischemic stroke, although causing brain infarction and neurological deficits, can activate innate neuroprotective mechanisms, including regional mechanisms within the ischemic brain and distant mechanisms from non-ischemic organs such as the liver, spleen, and pancreas, supporting neuronal survival, confining brain infarction, and alleviating neurological deficits. Both regional and distant mechanisms are defined as systems neuroprotective mechanisms. The regional neuroprotective mechanisms involve release and activation of neuroprotective factors such as adenosine and bradykinin, inflammatory responses, expression of growth factors such as nerve growth factors and neurotrophins, and activation and differentiation of resident neural stem cells to neurons and glial cells. The distant… More >

  • Open Access

    ARTICLE

    Traction Force Measurements of Human Aortic Smooth Muscle Cells Reveal a Motor-Clutch Behavior

    Petit Claudie1, Guignandon Alain2, Avril Stéphane1,*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 87-108, 2019, DOI:10.32604/mcb.2019.06415

    Abstract The contractile behavior of smooth muscle cells (SMCs) in the aorta is an important determinant of growth, remodeling, and homeostasis. However, quantitative values of SMC basal tone have never been characterized precisely on individual SMCs. Therefore, to address this lack, we developed an in vitro technique based on Traction Force Microscopy (TFM). Aortic SMCs from a human lineage at low passages (4-7) were cultured 2 days in conditions promoting the development of their contractile apparatus and seeded on hydrogels of varying elastic modulus (1, 4, 12 and 25 kPa) with embedded fluorescent microspheres. After complete adhesion, SMCs were artificially detached… More >

  • Open Access

    ARTICLE

    Experimental Characterization of MCF-10A Normal Cells Using AFM: Comparison with MCF-7 Cancer Cells

    Moharam Habibnejad Korayem1,*, Zahra Rastegar2

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 109-122, 2019, DOI:10.32604/mcb.2019.04706

    Abstract The mechanical properties of single cells have been recently identified as the basis of an emerging approach in medical applications since they are closely related to the biological processes of cells and human health conditions. The problem in hand is how to measure mechanical properties in order to obtain them more accurately and applicably. Some of the cell’s properties such as elasticity module and adhesion have been measured before using various methods; nevertheless, comprehensive tests for two healthy and cancerous cells have not been performed simultaneously. As a Nanoscale device, AFM has been used for some biological cells, however for… More >

  • Open Access

    ARTICLE

    An Isogeometric Analysis Computational Platform for Material Transport Simulation in Complex Neurite Networks

    Angran Li1, Xiaoqi Chai2, Ge Yang2,3, Yongjie Jessica Zhang1,2,*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 123-140, 2019, DOI:10.32604/mcb.2019.06479

    Abstract Neurons exhibit remarkably complex geometry in their neurite networks. So far, how materials are transported in the complex geometry for survival and function of neurons remains an unanswered question. Answering this question is fundamental to understanding the physiology and disease of neurons. Here, we have developed an isogeometric analysis (IGA) based platform for material transport simulation in neurite networks. We modeled the transport process by reaction-diffusion-transport equations and represented geometry of the networks using truncated hierarchical tricubic B-splines (THB-spline3D). We solved the Navier-Stokes equations to obtain the velocity field of material transport in the networks. We then solved the transport… More >

  • Open Access

    ARTICLE

    Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography

    Caining Zhang1, Huaguang Li2, Xiaoya Guo3, David Molony4, Xiaopeng Guo2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Rencan Nie2,*, Jinde Cao3,*, Dalin Tang1,*,7

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 153-161, 2019, DOI:10.32604/mcb.2019.06873

    Abstract Cardiovascular diseases are closely associated with deteriorating atherosclerotic plaques. Optical coherence tomography (OCT) is a recently developed intravascular imaging technique with high resolution approximately 10 microns and could provide accurate quantification of coronary plaque morphology. However, tissue segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective. To overcome these limitations, two automatic segmentation methods for intracoronary OCT image based on support vector machine (SVM) and convolutional neural network (CNN) were performed to identify the plaque region and characterize plaque components. In vivo IVUS and OCT coronary plaque data from 5… More >

  • Open Access

    ARTICLE

    Epigenetic Modulations Induction Using DSCR1 Ectopic Expression in Breast Cancer Cells

    Zahra Niki Boroujeni1, Atefeh Shirkav1, Seyed Ahmad Aleyasin1,*

    Molecular & Cellular Biomechanics, Vol.16, No.1, pp. 41-58, 2019, DOI:10.32604/mcb.2019.04366

    Abstract Today, prognosis, diagnosis and treatment of cancers are progressing with non-invasive methods, including investigation and modification of the DNA methylation profile in cancer cells. One of the effective factors in regulating gene expression in mammals is DNA methylation. Methylation alterations of genes by external factors can change the expression of genes and inhibit the cancer. In the present study, we investigated the effect of Down syndrome critical region 1 gene (DSCR1) ectopic expression on the methylation status of the BCL-XL, ITGA6, TCF3, RASSF1A, DOK7, VIM and CXCR4 genes in breast cancer cell lines. The effect of DSCR1 ectopic expression on… More >

  • Open Access

    ARTICLE

    Characterizing the Mechanical Variations of Human Femoropopliteal Artery During Aging Process

    Shaoxiong Yang1, Yingxin Qi2, Zonglai Jiang2, Xiaobo Gong1,*

    Molecular & Cellular Biomechanics, Vol.16, No.1, pp. 13-26, 2019, DOI:10.32604/mcb.2019.06096

    Abstract Vascular diseases during aging process are closely correlated to the age-related changes of mechanical stimuli for resident cells. Characterizing the variations of mechanical environments in vessel walls with advancing age is crucial for a better understanding of vascular remodeling and pathological changes. In this study, the mechanical stress, strain, and wall stiffness of the femoropopliteal arteries (FPAs) were compared among four different age groups from adolescent to young, middle-aged, and aged subjects. The material parameters and geometries adopted in the FPA models were obtained from published experimental results. It is found that high mechanical stress appears at different layers in… More >

Displaying 17511-17520 on page 1752 of 20611. Per Page