Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,993)
  • Open Access

    ARTICLE

    A Temperature-Indexed Concrete Damage Plasticity Model Incorporating Bond-Slip Mechanism for Thermo-Mechanical Analysis of Reinforced Concrete Structures

    Wu Feng1,2,*, Tengku Anita Raja Hussin1, Xu Yang3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071664 - 31 December 2025

    Abstract This study investigates the thermo–mechanical behavior of C40 concrete and reinforced concrete subjected to elevated temperatures up to 700°C by integrating experimental testing and advanced numerical modeling. A temperature-indexed Concrete Damage Plasticity (CDP) framework incorporating bond–slip effects was developed in Abaqus to capture both global stress–strain responses and localized damage evolution. Uniaxial compression tests on thermally exposed cylinders provided residual strength data and failure observations for model calibration and validation. Results demonstrated a distinct two-stage degradation regime: moderate stiffness and strength reduction up to ~400°C, followed by sharp deterioration beyond 500°C–600°C, with residual capacity at… More >

  • Open Access

    ARTICLE

    Revisiting Nonlinear Modelling Approaches for Existing RC Structures: Lumped vs. Distributed Plasticity

    Hüseyin Bilgin*, Bredli Plaku

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071007 - 31 December 2025

    Abstract Nonlinear static procedures are widely adopted in structural engineering practice for seismic performance assessment due to their simplicity and computational efficiency. However, their reliability depends heavily on how the nonlinear behaviour of structural components is represented. The recent earthquakes in Albania (2019) and Türkiye (2023) have underscored the need for accurate assessment techniques, particularly for older reinforced concrete buildings with poor detailing. This study quantifies the discrepancies between default and user-defined component modelling in pushover analysis of pre-modern reinforced concrete structures, analysing two representative low- and mid-rise reinforced concrete frame buildings. The lumped plasticity approach… More > Graphic Abstract

    Revisiting Nonlinear Modelling Approaches for Existing RC Structures: Lumped vs. Distributed Plasticity

  • Open Access

    REVIEW

    Recent Efforts on the Compressive and Tensile Strength Behavior of Thermoplastic-Based Recycled Aggregate Concrete toward Sustainability in Construction Materials

    Mahmoud Alhashash1, Abdullah Alariyan2, Ameen Mokhles Youns3, Favzi Ghreivati4, Ahed Habib5,*, Maan Habib6

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070194 - 31 December 2025

    Abstract Concrete production often relies on natural aggregates, which can lead to resource depletion and environmental harm. In addition, improper disposal of thermoplastic waste exacerbates ecological problems. Although significant attention has recently been given to recycling various waste materials into concrete, studies specifically addressing thermoplastic recycled aggregates are still trending. This underscores the need to comprehensively review existing literature, identify research trends, and recognize gaps in understanding the mechanical performance of thermoplastic-based recycled aggregate concrete. Accordingly, this review summarizes recent investigations focused on the mechanical properties of thermoplastic-based recycled aggregate concrete, emphasizing aspects such as compressive… More >

  • Open Access

    REVIEW

    RP11-Derived Long Non-Coding RNAs in Hepatocellular Carcinoma: Hidden Treasures in Plain Sight

    Se Ha Jang1,2,#, Hyung Seok Kim3,#, Jung Woo Eun1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.072240 - 30 December 2025

    Abstract Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal malignancies worldwide. Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of gene expression and cancer progression, yet the functional diversity of RP11-derived lncRNAs—originally mapped to bacterial artificial chromosome (BAC) clones from the Roswell Park Cancer Institute—has only recently begun to be appreciated. This mini-review aims to systematically synthesize current findings on RP11-derived lncRNAs in HCC, outlining their genomic origins, molecular mechanisms, and biological significance. We highlight their roles in metabolic reprogramming, microRNA network modulation, and tumor progression, as well as their diagnostic and More >

  • Open Access

    ARTICLE

    miR-512-3p/RPS6KA2 Axis Regulates Cisplatin Resistance in Ovarian Cancer via Autophagy and Ferroptosis

    Jianfa Wu1,2,3, Huang Chen3, Sihong Wang1,2, Lei Peng1,2, Xiaoying Hu1,2, Zhou Liu1,2,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070542 - 30 December 2025

    Abstract Objectives: Ribosomal protein S6 kinase A2 (RPS6KA2) has been identified as a potential prognostic biomarker in several cancers, including breast cancer, glioblastoma, and prostate cancer. However, its functional significance in ovarian cancer is not well characterized. This study was designed to explore the therapeutic relevance of modulating RPS6KA2 in the context of ovarian cancer, particularly in relation to cisplatin resistance. Methods: The expression levels of RPS6KA2 and key regulators involved in autophagy and ferroptosis were assessed using quantitative reverse transcription-PCR, immunofluorescence staining, immunohistochemistry, and western blotting. Prognostic associations were conducted using the Kaplan-Meier Plotter database.… More >

  • Open Access

    ARTICLE

    Optimal Operation of Virtual Power Plants Based on Revenue Distribution and Risk Contribution

    Heping Qi, Wenyao Sun*, Yi Zhao, Xiaoyi Qian, Xingyu Jiang

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069603 - 27 December 2025

    Abstract Virtual power plant (VPP) integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions, promote the consumption of renewable energy, and improve economic efficiency. In this paper, aiming at the uncertainty of distributed wind power and photovoltaic output, considering the coupling relationship between power, carbon trading, and green card market, the optimal operation model and bidding scheme of VPP in spot market, carbon trading market, and green card market are established. On this basis, through the Shapley value and independent risk contribution theory in cooperative game theory, the quantitative… More > Graphic Abstract

    Optimal Operation of Virtual Power Plants Based on Revenue Distribution and Risk Contribution

  • Open Access

    ARTICLE

    A Deep Reinforcement Learning-Based Partitioning Method for Power System Parallel Restoration

    Changcheng Li1,2, Weimeng Chang1,2, Dahai Zhang1,*, Jinghan He1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069389 - 27 December 2025

    Abstract Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts. This paper proposes a novel partitioning method based on deep reinforcement learning. First, the partitioning decision process is formulated as a Markov decision process (MDP) model to maximize the modularity. Corresponding key partitioning constraints on parallel restoration are considered. Second, based on the partitioning objective and constraints, the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function. The soft bonus scaling mechanism… More >

  • Open Access

    ARTICLE

    Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios

    Yong Li, Yuxuan Chen*, Jiahui He, Guowei He, Chenxi Dai, Jingjing Tong, Wenting Lei

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069257 - 27 December 2025

    Abstract Ensuring reliable power supply in urban distribution networks is a complex and critical task. To address the increased demand during extreme scenarios, this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants (VPPs). The proposed strategy improves system flexibility and responsiveness by optimizing the power adjustment of flexible resources. In the proposed strategy, the Gaussian Process Regression (GPR) is firstly employed to determine the adjustable range of aggregated power within the VPP, facilitating an assessment of its potential contribution to power supply support. Then, an optimal dispatch model based on More > Graphic Abstract

    Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios

  • Open Access

    ARTICLE

    Machine Learning Based Uncertain Free Vibration Analysis of Hybrid Composite Plates

    Bindi Saurabh Thakkar1, Pradeep Kumar Karsh2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-22, 2026, DOI:10.32604/cmc.2025.072839 - 09 December 2025

    Abstract This study investigates the uncertain dynamic characterization of hybrid composite plates by employing advanced machine-assisted finite element methodologies. Hybrid composites, widely used in aerospace, automotive, and structural applications, often face variability in material properties, geometric configurations, and manufacturing processes, leading to uncertainty in their dynamic response. To address this, three surrogate-based machine learning approaches like radial basis function (RBF), multivariate adaptive regression splines (MARS), and polynomial neural networks (PNN) are integrated with a finite element framework to efficiently capture the stochastic behavior of these plates. The research focuses on predicting the first three natural frequencies… More >

  • Open Access

    ARTICLE

    Research on Integrating Deep Learning-Based Vehicle Brand and Model Recognition into a Police Intelligence Analysis Platform

    Shih-Lin Lin*, Cheng-Wei Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071915 - 09 December 2025

    Abstract This study focuses on developing a deep learning model capable of recognizing vehicle brands and models, integrated with a law enforcement intelligence platform to overcome the limitations of existing license plate recognition techniques—particularly in handling counterfeit, obscured, or absent plates. The research first entailed collecting, annotating, and classifying images of various vehicle models, leveraging image processing and feature extraction methodologies to train the model on Microsoft Custom Vision. Experimental results indicate that, for most brands and models, the system achieves stable and relatively high performance in Precision, Recall, and Average Precision (AP). Furthermore, simulated tests… More >

Displaying 1-10 on page 1 of 2993. Per Page