Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    On Privacy-Preserved Machine Learning Using Secure Multi-Party Computing: Techniques and Trends

    Oshan Mudannayake1,#, Amila Indika2,#, Upul Jayasinghe2, Gyu Myoung Lee3,*, Janaka Alawatugoda4

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2527-2578, 2025, DOI:10.32604/cmc.2025.068875 - 23 September 2025

    Abstract The rapid adoption of machine learning in sensitive domains, such as healthcare, finance, and government services, has heightened the need for robust, privacy-preserving techniques. Traditional machine learning approaches lack built-in privacy mechanisms, exposing sensitive data to risks, which motivates the development of Privacy-Preserving Machine Learning (PPML) methods. Despite significant advances in PPML, a comprehensive and focused exploration of Secure Multi-Party Computing (SMPC) within this context remains underdeveloped. This review aims to bridge this knowledge gap by systematically analyzing the role of SMPC in PPML, offering a structured overview of current techniques, challenges, and future directions. More >

  • Open Access

    REVIEW

    Homomorphic Encryption for Machine Learning Applications with CKKS Algorithms: A Survey of Developments and Applications

    Lingling Wu1, Xu An Wang1,2,*, Jiasen Liu1, Yunxuan Su1, Zheng Tu1, Wenhao Liu1, Haibo Lei1, Dianhua Tang3, Yunfei Cao3, Jianping Zhang3

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 89-119, 2025, DOI:10.32604/cmc.2025.064346 - 29 August 2025

    Abstract Due to the rapid advancement of information technology, data has emerged as the core resource driving decision-making and innovation across all industries. As the foundation of artificial intelligence, machine learning(ML) has expanded its applications into intelligent recommendation systems, autonomous driving, medical diagnosis, and financial risk assessment. However, it relies on massive datasets, which contain sensitive personal information. Consequently, Privacy-Preserving Machine Learning (PPML) has become a critical research direction. To address the challenges of efficiency and accuracy in encrypted data computation within PPML, Homomorphic Encryption (HE) technology is a crucial solution, owing to its capability to… More >

  • Open Access

    ARTICLE

    Determination of Monitoring Control Value for Concrete Gravity Dam Spatial Deformation Based on POT Model

    Zhiwen Xie, Tiantang Yu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2119-2135, 2023, DOI:10.32604/cmes.2023.025070 - 23 November 2022

    Abstract Deformation can directly reflect the working behavior of the dam, so determining the deformation monitoring control value can effectively monitor the safety of dam operation. The traditional dam deformation monitoring control value only considers the single measuring point. In order to overcome the limitation, this paper presents a new method to determine the monitoring control value for concrete gravity dam based on the deformations of multi-measuring points. A dam’s comprehensive deformation displacement is determined by the measured values at different measuring points on the positive inverted vertical line and the corresponding weight of each measuring… More >

Displaying 1-10 on page 1 of 3. Per Page