Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    ARNet: Integrating Spatial and Temporal Deep Learning for Robust Action Recognition in Videos

    Hussain Dawood1, Marriam Nawaz2, Tahira Nazir3, Ali Javed2, Abdul Khader Jilani Saudagar4,*, Hatoon S. AlSagri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 429-459, 2025, DOI:10.32604/cmes.2025.066415 - 31 July 2025

    Abstract Reliable human action recognition (HAR) in video sequences is critical for a wide range of applications, such as security surveillance, healthcare monitoring, and human-computer interaction. Several automated systems have been designed for this purpose; however, existing methods often struggle to effectively integrate spatial and temporal information from input samples such as 2-stream networks or 3D convolutional neural networks (CNNs), which limits their accuracy in discriminating numerous human actions. Therefore, this study introduces a novel deep-learning framework called the ARNet, designed for robust HAR. ARNet consists of two main modules, namely, a refined InceptionResNet-V2-based CNN and… More >

  • Open Access

    ARTICLE

    Health Monitoring and Maintenance of Urban Road Infrastructure Using Temporal Convolutional Networks with Adaptive Activation

    Zongqi Li1, Hongwei Zhao2,*, Jianyong Guo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 345-357, 2025, DOI:10.32604/cmes.2025.066175 - 31 July 2025

    Abstract Monitoring the condition of road infrastructure is crucial for maintaining its structural integrity and ensuring safe transportation. This study proposes a deep learning framework based on Temporal Convolutional Networks (TCN) integrated with Adaptive Parametric Rectified Linear Unit (APReLU) to predict future road subbase strain trends. Our model leverages time-series strain data collected from embedded triaxial sensors within a national highway, spanning August 2021 to June 2022, to forecast strain dynamics critical for proactive maintenance planning. The TCN-APReLU architecture combines dilated causal convolutions to capture long-term dependencies and APReLU activation functions to adaptively model nonlinear strain More >

  • Open Access

    ARTICLE

    Classification of Human Protein in Multiple Cells Microscopy Images Using CNN

    Lina Al-joudi, Muhammad Arif*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1763-1780, 2023, DOI:10.32604/cmc.2023.039413 - 30 August 2023

    Abstract The subcellular localization of human proteins is vital for understanding the structure of human cells. Proteins play a significant role within human cells, as many different groups of proteins are located in a specific location to perform a particular function. Understanding these functions will help in discovering many diseases and developing their treatments. The importance of imaging analysis techniques, specifically in proteomics research, is becoming more prevalent. Despite recent advances in deep learning techniques for analyzing microscopy images, classification models have faced critical challenges in achieving high performance. Most protein subcellular images have a significant… More >

Displaying 1-10 on page 1 of 3. Per Page