Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    PROCEEDINGS

    Study on Peridynamics Simulation Method of Anti-Penetration of Ceramic/Metal Composite Structures

    Haoran Zhang1, Lisheng Liu2,*, Qiwen Liu2, Xin Lai2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09493

    Abstract Ceramic metal composite structure with high hardness, high bending strength of ceramic materials as the front layer and materials with high tensile strength, high elongation as the backing layer, has excellent penetration resistance. The current numerical methods for studying the penetration resistance of ceramic/metal composite structures under ballistic impact still have many deficiencies. Peridynamics (PD) is a novel nonlocal theory that is well suited for simulations involving damage and fracture behavior. At present, the existing rate-dependent bond-based PD (BB-PD) constitutive model considering the rotation effect and the Johnson-Cook (JC) metal model based on non-ordinary state-based PD (SB-PD) have been proved… More >

  • Open Access

    PROCEEDINGS

    Peridynamic Analysis on Failure of Cantilever Beam Subjected to a Concentrated Force and Uniform Distributed Traction

    Zeyuan Zhou1, Ming Yu1, Zaixing Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09135

    Abstract Peridynamics (PD) is a reformulation of the classical continuum mechanics. Its core consists in that a weighted integral of relative displacement over a spatial domain is used instead of the spatial derivative of displacement in governing equations of deformation. Based on an improved technique of exerting traction on boundary surface, an improved peridynamic motion equation has been proposed within the framework of the peridynamic(PD) theory. It is more natural and easier to deal with boundary conditions for the elastic deformation and fracture analysis. Under the enhancement effect in the constructed transfer functions of boundary traction, there is not needed the… More >

  • Open Access

    PROCEEDINGS

    A Cosserat Bond-Based Correspondence Model

    Zhuang Chen1, Xihua Chu1,*, Diansen Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09057

    Abstract In this study, we develop a Cosserat bond-based correspondence model(Cosserat BBCM) based on the bondbased correspondence model (BBCM)[1]. BBCM is a generalized bond-based peridynamic model, where the peridynamic pair-wise force (PD force) is calculated by classical constitutive equations through the relation between PD force and stress. In our previous study, we develop the Cosserat peridynamic model (CPM) to investigate the microstructure-related crack growth behavior [2, 3]. But the interactions between material particles are represented by PD forces and moments instead of the stress and couple stress. Due to this divergence, the Cosserat constitutive model such as the elastoplastic Cosserat model… More >

  • Open Access

    PROCEEDINGS

    A Coupled Hygro-Thermo-Mechanical Bond-Based Cosserat Peridynamic Porous Media Model for Heated Fracture of Concrete

    Jiaming Zhang1, Xihua Chu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09055

    Abstract This paper presents a fully coupled hygro-thermo-mechanical bond-based Cosserat peridynamic porous media model for concrete at high temperature [1-3]. The model enables the problem of Poisson's ratio limitation to be relieved and the effect of cement particle size and its independent micro-rotation to be taken into account [4]. A multi-rate explicit integration strategy is proposed, which allows this complex multi-field fully coupled governing equation to be well solved. Numerical simulations mainly focus on the terms of temperature, water vapour pressure and damage level to verify the validity of the model [5-9]. And they additionally demonstrate the effect of cement particle… More >

  • Open Access

    PROCEEDINGS

    A Peridynamics-Based Finite Element Method (PeriFEM) and Its Implementation in Commercial FEM Software for Brittle Fractures

    Fei Han1,*, Zhibin Li1, Jianyu Zhang1, Zhiying Liu1, Chen Yao1, Wenping Han1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09023

    Abstract The classical finite element method has been successfully applied to many engineering problems but not to cases with space discontinuity. A peridynamics-based finite element method (PeriFEM) is presented according to the principle of minimum potential energy, which enables discontinuity. First, the integral domain of peridynamics is reconstructed, and a new type of element called peridynamic element (PE) is defined. Although PEs are generated by the continuous elements (CEs) of classical FEM, they do not affect each other. Then, spatial discretization is performed based on PEs and CEs, and the linear equations about nodal displacement are established according to the principle… More >

  • Open Access

    PROCEEDINGS

    Study of Multi-Group Neutron Diffusion in Nuclear Fuel Pellet based on Peridynamics

    Dahua Hao1, Qiqing Liu1, Yin Yu1, Yile Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09301

    Abstract In this study, a method for solving multigroup neutron diffusion equations for nuclear fuel pellets is proposed based on the bond-based PeriDynamic (PD) theory. Firstly, adopting the idea of non-local diffusion, the PD neutron diffusion coefficient is defined and calibrated through the equality of potential with the traditional neutron diffusion coefficient. Comparing the calculation results of the neutron flux distribution of the single-group neutron diffusion by the PD method and the traditional finite element method, the feasibility of the method is verified. Secondly, apply the leakage term in single-group to multigroup and consider the scattering term between different energy groups.… More >

  • Open Access

    PROCEEDINGS

    Micro-CT Based Meso-Scale Modeling and Peridynamics Analysis for Short-Fiber Composites

    Zhiyang Yao1, Shuling Wang1, Yin Yu1, Yile Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09298

    Abstract This study presents a method for modeling and analyzing the microstructure of short-fiber composites by using state-based PeriDynamic (PD). The micro-structure of short-fiber composites is obtained from MicroCT scanning which provides non-uniformly discretized meshes of short-fiber’s surface profile. In order to obtain the uniformly discretized PD model, a new layering algorithm is proposed to reconstruct the shortfiber microstructure. Furthermore, considering the anisotropy of short-fiber, a clustering algorithm based on machine learning is introduced to identify fibers and calculate their orientations. The PD interaction domain of a material point on the boundary is incomplete, it can be complemented by searching material… More >

  • Open Access

    PROCEEDINGS

    Dynamic Analysis of Stiffened Plates by the Peridynamic Mindlin Shell

    Jin Han1, Qi Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09848

    Abstract In this paper, we extend the Reissner-Mindlin shell theory based on peridynamics method proposed in [1] to the stiffened plate and explore its application to engineering problems, several examples are given to verify its effectiveness in the dynamic analysis. The coupling method is used in this paper to model the stiffened plate. The plate and the stiffener are treated as two independent shell to calculate the velocity and acceleration respectively, then the interaction between two parts of the stiffened plate is added at the coupling particle to satisfy the continuity condition. The non-local peridynamics theory of solids provides an integral… More >

  • Open Access

    PROCEEDINGS

    The Coupled Thermo-Chemo-Mechanical Peridynamics for ZrB2 Ceramics Ablation Behavior

    Yuanzhe Li1, Qiwen Liu2,*, Lisheng Liu2, Hai Mei2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09500

    Abstract The ablation of ultra-high-temperature ceramics (UTHCs) is a complex physicochemical process including mechanical behavior, temperature effect, and chemical reactions. In order to realize the structural optimization and functional design of ultra-high temperature ceramics, a coupled thermo-chemomechanical bond-based peridynamics (PD) model is proposed based on the ZrB2 ceramics oxidation kinetics model and coupled thermomechanical bond-based peridynamics. Compared with the traditional coupled thermo-mechanical model, the proposed model considers the influence of chemical reaction process on the ablation resistance of ceramic materials. In order to verify the reliability of the proposed model, the thermomechanical coupling model, damage model and oxidation kinetic model are… More >

  • Open Access

    PROCEEDINGS

    A Coupled Peridynamics Model for the Ablation and Plastic Fracture Simulation of Reactor Pressure Vessels

    Yonggang Zheng1,*, Hanbo Zhang1, Jingyan Li1, Hui Li2, Hongfei Ye1, Hongwu Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.010050

    Abstract The reactor pressure vessels (RPV), a typical kind of axisymmetric structures, usually serve under high temperature and pressure conditions. The numerical analysis of the mechanical behaviors of these structures plays a dominant role for their structural design, advanced manufacture and safety assessment in practical engineering applications[1-2]. However, the extremely conditions bring great challenges for the numerical analysis of structures undergo ablation, plastic, damage and even fracture during an accident[3]. Based on the superior performance of peridynamics model in predicting fracture behaviors [4-7], a coupled axisymmetric non-ordinary state-based peridynamics (CA-NOSB-PD) model is proposed in this work to predict the ablation, plastic… More >

Displaying 1-10 on page 1 of 38. Per Page