Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    PROCEEDINGS

    Study of Multi-Group Neutron Diffusion in Nuclear Fuel Pellet based on Peridynamics

    Dahua Hao1, Qiqing Liu1, Yin Yu1, Yile Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09301

    Abstract In this study, a method for solving multigroup neutron diffusion equations for nuclear fuel pellets is proposed based on the bond-based PeriDynamic (PD) theory. Firstly, adopting the idea of non-local diffusion, the PD neutron diffusion coefficient is defined and calibrated through the equality of potential with the traditional neutron diffusion coefficient. Comparing the calculation results of the neutron flux distribution of the single-group neutron diffusion by the PD method and the traditional finite element method, the feasibility of the method is verified. Secondly, apply the leakage term in single-group to multigroup and consider the scattering term between different energy groups.… More >

  • Open Access

    PROCEEDINGS

    Micro-CT Based Meso-Scale Modeling and Peridynamics Analysis for Short-Fiber Composites

    Zhiyang Yao1, Shuling Wang1, Yin Yu1, Yile Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09298

    Abstract This study presents a method for modeling and analyzing the microstructure of short-fiber composites by using state-based PeriDynamic (PD). The micro-structure of short-fiber composites is obtained from MicroCT scanning which provides non-uniformly discretized meshes of short-fiber’s surface profile. In order to obtain the uniformly discretized PD model, a new layering algorithm is proposed to reconstruct the shortfiber microstructure. Furthermore, considering the anisotropy of short-fiber, a clustering algorithm based on machine learning is introduced to identify fibers and calculate their orientations. The PD interaction domain of a material point on the boundary is incomplete, it can be complemented by searching material… More >

  • Open Access

    PROCEEDINGS

    Dynamic Analysis of Stiffened Plates by the Peridynamic Mindlin Shell

    Jin Han1, Qi Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09848

    Abstract In this paper, we extend the Reissner-Mindlin shell theory based on peridynamics method proposed in [1] to the stiffened plate and explore its application to engineering problems, several examples are given to verify its effectiveness in the dynamic analysis. The coupling method is used in this paper to model the stiffened plate. The plate and the stiffener are treated as two independent shell to calculate the velocity and acceleration respectively, then the interaction between two parts of the stiffened plate is added at the coupling particle to satisfy the continuity condition. The non-local peridynamics theory of solids provides an integral… More >

  • Open Access

    PROCEEDINGS

    The Coupled Thermo-Chemo-Mechanical Peridynamics for ZrB2 Ceramics Ablation Behavior

    Yuanzhe Li1, Qiwen Liu2,*, Lisheng Liu2, Hai Mei2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09500

    Abstract The ablation of ultra-high-temperature ceramics (UTHCs) is a complex physicochemical process including mechanical behavior, temperature effect, and chemical reactions. In order to realize the structural optimization and functional design of ultra-high temperature ceramics, a coupled thermo-chemomechanical bond-based peridynamics (PD) model is proposed based on the ZrB2 ceramics oxidation kinetics model and coupled thermomechanical bond-based peridynamics. Compared with the traditional coupled thermo-mechanical model, the proposed model considers the influence of chemical reaction process on the ablation resistance of ceramic materials. In order to verify the reliability of the proposed model, the thermomechanical coupling model, damage model and oxidation kinetic model are… More >

  • Open Access

    PROCEEDINGS

    A Coupled Peridynamics Model for the Ablation and Plastic Fracture Simulation of Reactor Pressure Vessels

    Yonggang Zheng1,*, Hanbo Zhang1, Jingyan Li1, Hui Li2, Hongfei Ye1, Hongwu Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.010050

    Abstract The reactor pressure vessels (RPV), a typical kind of axisymmetric structures, usually serve under high temperature and pressure conditions. The numerical analysis of the mechanical behaviors of these structures plays a dominant role for their structural design, advanced manufacture and safety assessment in practical engineering applications[1-2]. However, the extremely conditions bring great challenges for the numerical analysis of structures undergo ablation, plastic, damage and even fracture during an accident[3]. Based on the superior performance of peridynamics model in predicting fracture behaviors [4-7], a coupled axisymmetric non-ordinary state-based peridynamics (CA-NOSB-PD) model is proposed in this work to predict the ablation, plastic… More >

  • Open Access

    PROCEEDINGS

    Investigation of Dynamic Damage Response of PBX Using Peridynamics Simulation

    Xiaoliang Deng1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010001

    Abstract Polymer bonded explosives (PBXs) are one of typical heterogeneous materials comprised of solid energetic particles surrounded by a polymer binder. PBXs are widely encountered in various applications such as rocket propellants and main explosive charges. PBXs can ignite or detonate due to an accidental impact loading, which usually leads to serious losses to personnel and property. Therefore, safety of PBXs regarding to various loading conditions is of great concern.
    The ignition of PBXs due to impact is a mechanical-thermal-chemical coupled phenomenon. The evolutions of micro-cracks and other damage behaviors are essential to help understanding of ignition phenomena induced by… More >

  • Open Access

    ARTICLE

    Peridynamic Study on Fracture Mode and Crack Propagation Path of a Plate with Multiple Cracks Subjected to Uniaxial Tension

    Zeyuan Zhou, Ming Yu, Xinfeng Wang*, Zaixing Huang

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2593-2620, 2023, DOI:10.32604/cmes.2023.027384

    Abstract How to simulate fracture mode and crack propagation path in a plate with multiple cracks is an attractive but dicult issue in fracture mechanics. Peridynamics is a recently developed nonlocal continuum formulation that can spontaneously predict the crack nucleation, branch and propagation in materials and structures through a meshfree discrete technique. In this paper, the peridynamic motion equation with boundary traction is improved by simplifying the boundary transfer functions. We calculate the critical cracking load and the fracture angles of the plate with multiple cracks under uniaxial tension. The results are consistent with those predicted by classical fracture mechanics. The… More > Graphic Abstract

    Peridynamic Study on Fracture Mode and Crack Propagation Path of a Plate with Multiple Cracks Subjected to Uniaxial Tension

  • Open Access

    ARTICLE

    ABAQUS and ANSYS Implementations of the Peridynamics-Based Finite Element Method (PeriFEM) for Brittle Fractures

    Fei Han*, Zhibin Li, Jianyu Zhang, Zhiying Liu, Chen Yao, Wenping Han

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2715-2740, 2023, DOI:10.32604/cmes.2023.026922

    Abstract In this study, we propose the first unified implementation strategy for peridynamics in commercial finite element method (FEM) software packages based on their application programming interface using the peridynamics-based finite element method (PeriFEM). Using ANSYS and ABAQUS as examples, we present the numerical results and implementation details of PeriFEM in commercial FEM software. PeriFEM is a reformulation of the traditional FEM for solving peridynamic equations numerically. It is considered that the non-local features of peridynamics yet possesses the same computational framework as the traditional FEM. Therefore, this implementation benefits from the consistent computational frameworks of both PeriFEM and the traditional… More >

  • Open Access

    ARTICLE

    Study on Crack Propagation Parameters of Tunnel Lining Structure Based on Peridynamics

    Zhihui Xiong, Xiaohui Zhou*, Jinjie Zhao, Hao Cui, Bo Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2449-2478, 2023, DOI:10.32604/cmes.2023.023353

    Abstract The numerical simulation results utilizing the Peridynamics (PD) method reveal that the initial crack and crack propagation of the tunnel concrete lining structure agree with the experimental data compared to the Japanese prototype lining test. The load structure model takes into account the cracking process and distribution of the lining segment under the influence of local bias pressure and lining thickness. In addition, the influence of preset cracks and lining section form on the crack propagation of the concrete lining model is studied. This study evaluates the stability and sustainability of tunnel structure by the Peridynamics method, which provides a… More >

  • Open Access

    ARTICLE

    The Coupled Thermo-Chemo-Mechanical Peridynamics for ZrB2 Ceramics Ablation Behavior

    Yuanzhe Li1, Qiwen Liu2,*, Lisheng Liu2, Hai Mei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 417-439, 2023, DOI:10.32604/cmes.2022.021258

    Abstract The ablation of ultra-high-temperature ceramics (UTHCs) is a complex physicochemical process including mechanical behavior, temperature effect, and chemical reactions. In order to realize the structural optimization and functional design of ultra-high temperature ceramics, a coupled thermo-chemo-mechanical bond-based peridynamics (PD) model is proposed based on the ZrB2 ceramics oxidation kinetics model and coupled thermo-mechanical bond-based peridynamics. Compared with the traditional coupled thermo-mechanical model, the proposed model considers the influence of chemical reaction process on the ablation resistance of ceramic materials. In order to verify the reliability of the proposed model, the thermo-mechanical coupling model, damage model and oxidation kinetic model are… More >

Displaying 11-20 on page 2 of 43. Per Page