Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Optimizing Performance Prediction of Perovskite Photovoltaic Materials by Statistical Methods-Intelligent Calculation Model

    Guo-Feng Fan1,2, Jia-Jing Qian1, Li-Ling Peng1, Xin-Hang Jia1, Ling-Han Zuo1, Jia-Can Yan1, Jiang-Yan Chen1, Anantkumar J. Umbarkar3, Wei-Chiang Hong4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3813-3837, 2025, DOI:10.32604/cmes.2025.073615 - 23 December 2025

    Abstract Accurate prediction of perovskite photovoltaic materials’ optoelectronic properties is crucial for developing efficient and stable materials, advancing solar technology. To address poor interpretability, high computational complexity, and inaccurate predictions in relevant machine learning models, this paper proposes a novel methodology. The technical route of this paper mainly centers on the random forest-knowledge distillation-bidirectional gated recurrent unit with attention technology (namely RF-KD-BIGRUA), which is applied in perovskite photovoltaic materials. Primarily, it combines random forest to quantitatively assess feature importance, selecting variables with significant impacts on photoelectric conversion efficiency. Subsequently, statistical techniques analyze the weight distribution of More >

  • Open Access

    ARTICLE

    Structural, optical and electrical properties of NiO thin films for hole transport layer in chalcogenide and perovskite materials based solar cells

    M. Abbasa, M. Haseeb-u-Rehmana, M. Sohailb, G. H. Tariqa,*

    Chalcogenide Letters, Vol.22, No.7, pp. 561-577, 2025, DOI:10.15251/CL.2025.227.561

    Abstract This work presents the fabrication of NiO thin films via versatile sol-gel spin coating method and investigation of annealing effects on their physical properties. After the deposition process, the NiO thin films underwent annealing process at different values of temperatures ranging from 200°C to 350°C for one hour duration. XRD patterns confirmed the polycrystalline nature, along the preferred orientations (110) and (101) planes. Nanoparticles in NiO thin films demonstrated an increase in crystallite size with rising annealing temperatures, reaching a maximum size of 49 nm at annealing temperature 300°C. FTIR patterns revealed Ni-O bands at… More >

  • Open Access

    REVIEW

    Research Advances in the Application of Non-Nickel-Based Perovskite Materials for Biogas Reforming

    Hao Tan1,2, Zeai Huang1,2,*, Runxian Gong2, Junming Mei2, Kejie Wu2, Tianyu Yan2, Daoquan Zhu2, Zhibin Zhang2, Ruiyang Zhang1,2

    Energy Engineering, Vol.122, No.11, pp. 4331-4347, 2025, DOI:10.32604/ee.2025.070226 - 27 October 2025

    Abstract Under the driving goal of carbon neutrality, biogas reforming technology has garnered significant attention due to its ability to convert greenhouse gases (CH4/CO2) into syngas (H2/CO). Conventional nickel-based catalysts suffer from issues such as carbon deposition, sintering and sulfur poisoning. Non-nickel-based perovskite materials, with their tunable crystal structure, dynamic oxygen vacancy characteristics, and excellent anti-coking/anti-sulfur performance, have emerged as a promising alternative. This review systematically summarizes the design for non-nickel-based perovskite materials, including optimizing lattice oxygen migration ability and active site stability by A/B site doping, defect engineering and heterojunction construction. The enhancing the conversion rate… More > Graphic Abstract

    Research Advances in the Application of Non-Nickel-Based Perovskite Materials for Biogas Reforming

  • Open Access

    PROCEEDINGS

    Morphing of Inorganic Perovskite Semiconductors Without Compromising Their Functional Properties

    Xiaocui Li1, Fu-Rong Chen1,*, Yang Lu2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010503

    Abstract Traditionally, it is relatively easy to process metal materials and polymers (plastics), while ceramic and inorganic semiconductor materials are hard to process, due to their intrinsic brittleness caused by directional covalent bonds or strong electrostatic interactions among ionic species. This brittleness can degrade semiconductor performance and lead to catastrophic failures, thereby limiting their application scenarios and service lifetime. Achieving room-temperature deformability in semiconductor materials without compromising their functionality has been a long-standing goal in materials science. Recently, room-temperature ductile semiconductors have emerged, with their deformability enhanced by factors such as size effects, fewer pre-existing micro-cracks,… More >

  • Open Access

    ARTICLE

    Structural, elastic, mechanical, and electronic properties of chalcogenide perovskite SnZrS3 under pressure

    S. Y. Chena,*, W. Wangb

    Chalcogenide Letters, Vol.21, No.4, pp. 293-304, 2024, DOI:10.15251/CL.2024.214.293

    Abstract In this paper, we have presented the structural, elastic, mechanical, and electronic properties of the transition metal chalcogenide perovskite SnZrS3 under different pressures by using first-principles method. Our calculated lattice parameters at ambient pressure are in good agreement with the experimental and previous theoretical results. The elastic constants were evaluated numerically for orthorhombic SnZrS3 using the strain-stress approach. Orthorhombic SnZrS3 shows a strong anisotropic behavior of the elastic and structural properties. According to the calculations of the electronic properties, we find the states near the valence band top are derived from S 3p, Zr 4d, Sn 5p, More >

  • Open Access

    ARTICLE

    Ultrasonic spray synthesis, photoelectric properties and photovoltaic performances of chalcogenide CaSnS3

    J. T. Jiaa,b, X. H. Yanga,b,*, L. W. Wanga,b

    Chalcogenide Letters, Vol.21, No.7, pp. 543-556, 2024, DOI:10.15251/CL.2024.217.543

    Abstract Chalcogenide perovskites are promising lead-free, stable absorber materials for solar cells. This work reports the synthesis of orthorhombic phase pure CaSnS3 thin films by facile low temperature sulfurization of solution-processed CaSnO3 oxide precursors. Structural characterization confirms complete anion exchange to produce crystalline CaSnS3 films with vertically aligned rod-like grains. Optical studies show strong visible light absorption with direct bandgap of 1.72 eV, ideal for photovoltaics. Electrical measurements indicate p-type conductivity with hole concentration of 1.2×1017 cm-3 and mobility around 8 cm2V-1s-1 at room temperature. First-principles DFT calculations corroborate the p-type electronic structure. Prototype CaSnS3 solar cells are fabricated More >

  • Open Access

    ARTICLE

    A first-principles investigation of Ba2CaTeO6 and Ba2CaWO6 compounds for thermoelectric and optoelectronic applications

    M. Ishfaqa, A. Aziza, S. A. Aldaghfagb, S. Noreenc, M. Zahidc, M. Yaseena,*

    Chalcogenide Letters, Vol.21, No.8, pp. 615-629, 2024, DOI:10.15251/CL.2024.218.615

    Abstract Herein, structural, optoelectronic, and thermoelectric characteristics of Ba2CaTeO6 and Ba2CaWO6 oxides double perovskite have been evaluated by first-principles calculations. Enthalpy of formation and tolerance factor are computed to ensure the respective structural and thermodynamical stability. Ba2CaTeO6 and Ba2CaWO6 have mBJ computed bandgaps of 5.87 eV and 4.20 eV, respectively. Furthermore, the optical parameters like dielectric constants (ԑ1(ω) & ԑ2(ω)) and other related parameters are computed. The thermoelectric (TE) parameters were examined using the BoltzTraP package. The ZT values of Ba2Ca(Te/W)O6 at 450 K are 0.76/0.79, respectively. The outcomes of the Ba2CaTeO6 and Ba2CaWO6 double perovskite show that these materials are More >

  • Open Access

    PROCEEDINGS

    Split-Ring Structured All-Inorganic Perovskite Photodetector Arrays for Human-Machine Interaction

    Bori Shi1, Jinbo Wu1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010900

    Abstract Photodetectors with long detection distances and fast responses are important media in constructing a non-contact human-machine interface for the human-machine interaction. All-inorganic perovskite have excellent optoelectronic performance with high moisture and oxygen resistance, making them one of the promising candidates for high-performance photodetectors, but a simple, low-cost and reliable fabrication technology is urgently needed. Here, a dual-function laser etching method is developed to complete both the lyophilic split-ring structure and electrode patterning. This novel split-ring structure can capture the perovskite precursor droplet efficiently and achieve the uniform and compact deposition of CsPbBr3 films. Furthermore, our… More >

  • Open Access

    ARTICLE

    Structural, electronic, elastic, and optical properties of chalcogenide perovskite SrZrS3 under ambient and high-pressure conditions

    M. L. Han*, Y. Hu

    Chalcogenide Letters, Vol.20, No.8, pp. 619-628, 2023, DOI:10.15251/CL.2023.208.619

    Abstract Hydrostatic pressure is an effective tool that can give rise to novel crystal structures and physical properties. In this paper, we perform the first-principles calculation based on density-functional theory (DFT) to study the structural, electronic, elastic, and optical properties of chalcogenide perovskite SrZrS3 under pressure. The results indicated that both the lattice constant and cell volume decrease with the increase of pressure, which are matched well with available previous values. The obtained elastic constants reveal the SrZrS3 is mechanically stable between 0 and 15 GPa. Additionally, the main features of the valence and conduction bands have More >

  • Open Access

    ARTICLE

    Photoluminescence properties of Ba0.7Sr0.3TiO3:Sm3+ modified K0.5Na0.5NbO3 perovskite oxide ceramics

    K. W. Suna, Z. Liub,*, R. X. Wangb, X. C. Linga, J. W. Suna

    Chalcogenide Letters, Vol.20, No.8, pp. 563-571, 2023, DOI:10.15251/CL.2023.208.563

    Abstract Ba0.7Sr0.3TiO3:Sm3+ modified KxNa(1-x)NbO3 ceramics with perovskite-type structure were synthesized via solid state sintering method. Sm3+ ions doping was designed for substituting both A and B sites in the ABO3 structure, Sm3+ doped Ba0.7Sr0.3TiO3 (Ba0.7Sr0.3TiO3:Sm3+ ) oxide precursor powders with the chemical formula of Ba0.7Sr0.3xSmx(Ti1-xSmx)O3 (x=0.005, 0.015, 0.025) were synthesized. Combined Ba0.7Sr0.3TiO3:Sm3+ with K0.5Na0.5NbO3, the perovskite-type solid solution composite ceramics were fabricated via solid phase sintering method. X-Ray diffraction was used for investigating the phase structure of the precursor powders and luminescent composite ceramics. The photoluminescence properties of the Sm3+ ions in the Ba0.7Sr0.3TiO3-K0.5Na0.5NbO3 composite ceramic materials were systematically investigated by exploring More >

Displaying 1-10 on page 1 of 16. Per Page