Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (109)
  • Open Access

    ARTICLE

    Melatonin Priming Enhances Potassium Dichromate Stress Tolerance and Morpho-Physiological Performance via Genetic Modulation in Melon (Cucumis melo L.) Plant

    Tai Liu1,#, Huichun Xu1,#, Sikandar Amanullah2,*, Ye Che1, Ling Zhang1, Zeyu Jiang1, Weiyi Bi1, Lei Zhu1, Di Wang1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 4117-4137, 2025, DOI:10.32604/phyton.2025.074131 - 29 December 2025

    Abstract Heavy metal accumulation in agricultural soil is primarily driven by pesticides, polluted water, and industrial gas emissions, which pose threats to sustainable crop production. Chromium (Cr) stress has an adverse impact on plant development and metabolism, but approaches to reduce its toxicity and enhance plant resistance remain limited. Melatonin is a potent antioxidant involved in regulating various morpho-physiological functions of plants under different abiotic stresses. In this study, we investigated the impact of exogenous melatonin to mitigate the negative effects of potassium dichromate (PD) stress in melon plants and analyzed genetic modulation of morphological, physiological,… More >

  • Open Access

    ARTICLE

    Melatonin Enhances Antioxidant Defense and Physiological Stability in Grapevine (Vitis vinifera L.) Cultivars ‘Merlot’ and ‘Erciş’ under UV-B Stress

    Sena Yıldız1, Nurhan Keskin2,*, Birhan Kunter3, Harlene Hatterman-Valenti4, Ozkan Kaya4,5,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3471-3492, 2025, DOI:10.32604/phyton.2025.073180 - 01 December 2025

    Abstract Climate change-driven environmental stresses, particularly ultraviolet-B (UV-B) radiation, pose severe threats to grapevine (Vitis vinifera L.) productivity and physiological stability. This study investigated the protective role of melatonin in in vitro plantlets of two grapevine cultivars, ‘Merlot’ and ‘Erciş’, subjected to low (≈8.25 μW cm−2, 16 h) and high (≈33 μW cm−2, 4 h) UV-B exposure. Significant cultivar-specific responses were observed (p < 0.001). The ‘Erciş’ cultivar exhibited higher oxidative stress, with malondialdehyde (MDA) levels reaching 24.30 mmol g−1 FW in control plants compared with 14.91 ± 0.25 mmol g−1 FW in ‘Merlot’. Melatonin provided dose-dependent mitigation, reducing MDA to… More >

  • Open Access

    REVIEW

    Physiological Pacing in Congenitally Corrected Transposition of the Great Arteries with Atrioventricular Block

    Zhuoxi Feng#,1, Jinyang Liu#,2, Zihao Wu1, Ziran Geng1, Zhimin Liu1,*

    Congenital Heart Disease, Vol.20, No.5, pp. 625-636, 2025, DOI:10.32604/chd.2025.069214 - 30 November 2025

    Abstract Congenitally corrected transposition of the great arteries (CCTGA) is a rare congenital heart disease characterized by atrioventricular, ventriculoarterial, and conduction system discordance, commonly accompanied by atrioventricular block (AVB). Pacing in patients with CCTGA and AVB (both pediatric and adult) poses challenges in strategy selection, procedural complexity, and clinical decision-making due to limited evidence. Conventional morphological left ventricular pacing is widely adopted but may induce ventricular dyssynchrony, heart failure, and tricuspid valve dysfunction. While cardiac resynchronization therapy serves as an upgrade for pacing-induced cardiomyopathy and heart failure, its application may be limited by coronary sinus anatomical… More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning and Fractional-Order Dynamical Framework for Multi-Scale Prediction of Breast Cancer Progression

    David Amilo1,*, Khadijeh Sadri1, Evren Hincal1,2, Mohamed Hafez3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2189-2222, 2025, DOI:10.32604/cmes.2025.070298 - 26 November 2025

    Abstract Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction. We present a hybrid framework that integrates machine learning (ML) and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales. On the Wisconsin Diagnostic Breast Cancer dataset, seven ML algorithms were evaluated, with deep neural networks (DNNs) achieving the highest accuracy (97.72%). Key morphological features (area, radius, texture, and concavity) were identified as top malignancy predictors, aligning with clinical intuition. Beyond static classification, we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression. The model revealed clinically interpretable patterns: More >

  • Open Access

    ARTICLE

    Comparative Analyses of Physiological and Transcriptomic Responses Reveal Chive (Allium ascalonicum L.) Bolting Tolerance Mechanisms

    Siyang Ou1, Liuyan Yang1, Tingting Yuan1, Mutong Li1, Guohui Liao2, Wanping Zhang1, Guangdong Geng1,*, Suqin Zhang1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2441-2460, 2025, DOI:10.32604/phyton.2025.068368 - 29 August 2025

    Abstract Chive (Allium ascalonicum L.), a seeding-vernalization-type vegetable, is prone to bolting. To explore the physiological and molecular mechanisms of its bolting, bolting-prone (‘BA’) and bolting-resistant (‘WA’) chives were sampled at the vegetative growth, floral bud differentiation, and bud emergence stages. No bolting was observed in bolting-resistant ‘WA’ on the 130th day after planting, whereas the bolting reached 39.22% in bolting-prone ‘BA’, which was significantly higher than that of ‘WA’. The contents of gibberellins, abscisic acid, and zeatin riboside after floral bud differentiation in ‘WA’ were significantly less than in ‘BA’, whereas the indoleacetic acid content in… More >

  • Open Access

    ARTICLE

    Physiological and Biochemical Responses and Non-Parametric Transcriptome Analysis for the Curcumin-Induced Improvement of Saline-Alkali Resistance in Akebia trifoliate (Thunb.) Koidz

    Xiaoqin Li, Yongfu Zhang*, Zhen Ren, Jiao Chen, Zuqin Qiao, Xingmei Tao, Xuan Yi, Kai Wang, Zhao Liu

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2529-2550, 2025, DOI:10.32604/phyton.2025.066894 - 29 August 2025

    Abstract Soil salinization is a major abiotic stress that hampers plant development and significantly reduces agricultural productivity, posing a serious challenge to global food security. Akebia trifoliata (Thunb.) Koidz, a species within the genus Akebia Decne., is valued for its use in food, traditional medicine, oil production, and as an ornamental plant. Curcumin, widely recognized for its pharmacological properties including anti-cancer, anti-neuroinflammatory, and anti-fibrotic effects, has recently drawn interest for its potential roles in plant stress responses. However, its impact on plant tolerance to saline-alkali stress remains poorly understood. In this study, the effects of curcumin on… More >

  • Open Access

    ARTICLE

    Human-Derived Low-Molecular-Weight Protamine (hLMWP) Conjugates Enhance Skin Cell Penetration and Physiological Activity

    Seo Yeon Shin1, Nu Ri Song1, Sa Rang Choi1, Ki Min Kim1, Jae Hee Byun1, Su Jung Kim2, Dai Hyun Jung2, Seong Sim Kim2, Seong Ju Park2, So Jeong Chu2, Kyung Mok Park1,*

    BIOCELL, Vol.49, No.8, pp. 1435-1448, 2025, DOI:10.32604/biocell.2025.065199 - 29 August 2025

    Abstract Background: The efficient transdermal delivery of biologically active molecules remains a major challenge because of the structural barrier of the stratum corneum, which limits the penetration of large or hydrophilic molecules. Low-molecular-weight protamine (LMWP) has a structure similar to that of the HIV TAT protein-derived peptide and is a representative cell-penetrating peptide (CPP) used to increase cell permeability. However, protamine has been reported to have many toxicities and side effects. Objectives: We developed human-derived low-molecular-weight protamine (hLMWP), which is based on fish-derived LMWP but designed using human protein sequences to improve safety and functionality. As… More > Graphic Abstract

    Human-Derived Low-Molecular-Weight Protamine (hLMWP) Conjugates Enhance Skin Cell Penetration and Physiological Activity

  • Open Access

    ARTICLE

    The Impact of Virtual Reality Environment Design on Emotional Recovery: Exploring Factors and Mechanisms

    Hao Fang1,2, Hongyun Guo1, Yinchao Chen3, Hui Shi4, Yihan Gan5, Lin Li6,*

    International Journal of Mental Health Promotion, Vol.27, No.7, pp. 1051-1069, 2025, DOI:10.32604/ijmhp.2025.066369 - 31 July 2025

    Abstract Objectives: Emotional stress is a significant public health challenge. Virtual reality (VR) offers the potential for aiding emotional recovery. This study explores the impact of VR environment design factors on emotional recovery, examining underlying mechanisms through physiological indicators and behavioral responses. Methods: Two experiments were conducted. Experiment 1 employed a 4 [Scene Type: real environment (RE), virtual scenes that restore the RE (VR), virtual scenes that incorporate natural window view design (VR-W), and a no-scene control condition (CTL)] × 3 (Experimental Phase: baseline, emotion arousal, recovery) mixed design (N = 33). Participants viewed a 4-min… More >

  • Open Access

    ARTICLE

    Leaf Position on the Sunflower Stem Determines Physiological Condition during Flowering

    Antonela Markulj Kulundžić1,*, Daniela Horvat2, Marija Kovačević Babić2, Anto Mijić1, Aleksandra Sudarić1, Maja Matoša Kočar1, Tomislav Duvnjak1, Ivica Liović1, Ivana Varga3, Marija Viljevac Vuletić2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.7, pp. 2075-2095, 2025, DOI:10.32604/phyton.2025.065961 - 31 July 2025

    Abstract Sunflower leaf photosynthesis strongly depends on the leaf position in the plant stem conditioning, which directly affects other physiological processes. Therefore, a study of the leaf’s physiological status regarding the leaf position in the stem was performed on sunflowers in the flowering stage. Eight differently positioned leaves were investigated, starting with the youngest leaf on the top of the stem to the leaves of the stem bottom, assigned as the oldest senescent leaves. According to chlorophyll fluorescence (ChlF) parameters connected to photosystem II (PSII) processes, significant changes in PSII functioning occurred only in the senescent… More >

  • Open Access

    REVIEW

    Physiological and Molecular Mechanisms of Freezing in Plants

    Ali Salehi Sardoei1,*, Bahman Fazeli-Nasab2

    Phyton-International Journal of Experimental Botany, Vol.94, No.6, pp. 1601-1630, 2025, DOI:10.32604/phyton.2025.064729 - 27 June 2025

    Abstract The ability of plants to tolerate cold is a complex process. When temperatures drop or freeze, plant tissues can develop ice, which dehydrates the cells. However, plants can protect themselves by preventing ice formation. This intricate response to cold stress is regulated by hormones, photoperiod, light, and various factors, in addition to genetic influences. In autumn, plants undergo morphological, physiological, biochemical, and molecular changes to prepare for the low temperatures of winter. Understanding cellular stress responses is crucial for genetic manipulation aimed at enhancing cold resistance. Early autumn frosts or late spring chills can cause… More >

Displaying 1-10 on page 1 of 109. Per Page