Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    CerfeVPR: Cross-Environment Robust Feature Enhancement for Visual Place Recognition

    Lingyun Xiang1, Hang Fu1, Chunfang Yang2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 325-345, 2025, DOI:10.32604/cmc.2025.062834 - 09 June 2025

    Abstract In the Visual Place Recognition (VPR) task, existing research has leveraged large-scale pre-trained models to improve the performance of place recognition. However, when there are significant environmental differences between query images and reference images, a large number of ineffective local features will interfere with the extraction of key landmark features, leading to the retrieval of visually similar but geographically different images. To address this perceptual aliasing problem caused by environmental condition changes, we propose a novel Visual Place Recognition method with Cross-Environment Robust Feature Enhancement (CerfeVPR). This method uses the GAN network to generate similar… More >

  • Open Access

    ARTICLE

    DIEONet: Domain-Invariant Information Extraction and Optimization Network for Visual Place Recognition

    Shaoqi Hou1,2,3,*, Zebang Qin2, Chenyu Wu2, Guangqiang Yin2, Xinzhong Wang1, Zhiguo Wang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5019-5033, 2025, DOI:10.32604/cmc.2025.058233 - 06 March 2025

    Abstract Visual Place Recognition (VPR) technology aims to use visual information to judge the location of agents, which plays an irreplaceable role in tasks such as loop closure detection and relocation. It is well known that previous VPR algorithms emphasize the extraction and integration of general image features, while ignoring the mining of salient features that play a key role in the discrimination of VPR tasks. To this end, this paper proposes a Domain-invariant Information Extraction and Optimization Network (DIEONet) for VPR. The core of the algorithm is a newly designed Domain-invariant Information Mining Module (DIMM)… More >

  • Open Access

    ARTICLE

    Leveraging Graph Cut’s Energy Function for Context Aware Facial Recognition in Indoor Environments

    Kazeem Oyebode1, Shengzhi Du2,*, Barend Jacobus van Wyk3

    Computer Systems Science and Engineering, Vol.38, No.2, pp. 229-238, 2021, DOI:10.32604/csse.2021.015372 - 23 April 2021

    Abstract Context-aware facial recognition regards the recognition of faces in association with their respective environments. This concept is useful for the domestic robot which interacts with humans when performing specific functions in indoor environments. Deep learning models have been relevant in solving facial and place recognition challenges; however, they require the procurement of training images for optimal performance. Pre-trained models have also been offered to reduce training time significantly. Regardless, for classification tasks, custom data must be acquired to ensure that learning models are developed from other pre-trained models. This paper proposes a place recognition model… More >

Displaying 1-10 on page 1 of 3. Per Page