Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    A Nonlinear Viscoelastic Finite Element Model of Polyethylene

    P.C. Chen∗,†, C.W. Colwell, D.D. D’Lima†,‡

    Molecular & Cellular Biomechanics, Vol.8, No.2, pp. 135-148, 2011, DOI:10.3970/mcb.2011.008.135

    Abstract A nonlinear viscoelastic finite element model of ultra-high molecular weight polyethylene (UHMWPE) was developed in this study. Eight cylindrical specimens were machined from ram extruded UHMWPE bar stock (GUR 1020) and tested under constant compression at 7% strain for 100 sec. The stress strain data during the initial ramp up to 7% strain was utilized to model the "instantaneous" stress-strain response using a Mooney-Rivlin material model. The viscoelastic behavior was modeled using the time-dependent relaxation in stress seen after the initial maximum stress was achieved using a stored energy formulation. A cylindrical model of similar dimensions was created using a… More >

Displaying 1-10 on page 1 of 1. Per Page