Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access


    A Comparative Investigation of the Biodegradation Behaviour of Linseed Oil-Based Cross-Linked Composites Filled with Industrial Waste Materials in Two Different Soils

    Eglė Malachovskienė1,*, Danguolė Bridžiuvienė1, Jolita Ostrauskaitė2, Justina Vaičekauskaitė2, Gailė Žalūdienė3

    Journal of Renewable Materials, Vol.11, No.3, pp. 1255-1269, 2023, DOI:10.32604/jrm.2022.023574

    Abstract The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers (pine needles, pine bark, grain mill waste, rapeseed cake) and a control sample without filler was studied during 180 days of exposure to two types of forest soil: deciduous and coniferous. The weight loss, morphological, and structural changes of polymer composites were noticed after 180 days of the soil burial test. The greatest weight loss of all tested samples was observed in coniferous forest soil (41.8%–63.2%), while in deciduous forest soil, it ranged between 37.7% and 42.3%. The most significant changes in the intensities of… More >

  • Open Access


    Elevated Temperature Properties of Bamboo Shaving Reinforced Geopolymer Composites

    Xinli Zhang1, Jiayu Zhang1, Zuhua Zhang2,*, Yiqiang Wu1,*, Yingfeng Zuo1

    Journal of Renewable Materials, Vol.11, No.1, pp. 27-40, 2023, DOI:10.32604/jrm.2023.023400

    Abstract Geopolymer is a new alternative cement binder to produce concrete. In the present study, a novel geopolymer composites containing bamboo shaving (0–2 wt.%) were fabricated and exposed to the temperatures of 200°C, 400°C, 600°C and 800°C. Physical properties, micro-structure, and mechanical strengths of the geopolymer composites were evaluated before and after heating in order to understand their thermal properties, which are essential for the use as building materials. As the temperature rises, the drying shrinkage and apparent porosity of the composites increase, while the compressive and bending strengths decrease. At the temperature range of 200°C–800°C, the residual compressive strength rates of… More >

  • Open Access


    A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites

    Jorge Neto, Henrique Queiroz, Ricardo Aguiar, Rosemere Lima, Daniel Cavalcanti, Mariana Doina Banea*

    Journal of Renewable Materials, Vol.10, No.3, pp. 561-589, 2022, DOI:10.32604/jrm.2022.017434

    Abstract Natural fiber reinforced polymer composites (NFRCs) have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites, such as low environmental impact and low cost. However, one of the drawbacks is that the NFRCs present relatively low mechanical properties and the absorption of humidity due to the hydrophilic characteristic of the natural fibre. One method to increase their performance is hybridization. Therefore, understanding the properties and potential of using multiple reinforcement’s materials to develop hybrid composites is of great interest. This paper provides an overview of the recent advances in hybrid… More > Graphic Abstract

    A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites

  • Open Access


    Conductive Polymer Composites Fabricated by Disposable Face Masks and Multi-Walled Carbon Nanotubes: Crystalline Structure and Enhancement Effect

    Meng Xiang1, Zhou Yang1, Jingjing Yang1, Tong Lu1, Danqi Wu1, Zhijun Liu1, Rongjie Xue1, Shuang Dong2,*

    Journal of Renewable Materials, Vol.10, No.3, pp. 821-831, 2022, DOI:10.32604/jrm.2022.017347

    Abstract Influenced by recent COVID-19, wearing face masks to block the spread of the epidemic has become the simplest and most effective way. However, after the people wear masks, thousands of tons of medical waste by used disposable masks will be generated every day in the world, causing great pressure on the environment. Herein, conductive polymer composites are fabricated by simple melt blending of mask fragments (mask polypropylene, short for mPP) and multi-walled carbon nanotubes (MWNTs). MWNTs were used as modifiers for composites because of their high strength and high conductivity. The crystalline structure, mechanical, electrical and thermal enhancement effect of… More >

  • Open Access


    Recent Trends in Preparation and Applications of Biodegradable Polymer Composites

    Haina1, Sagheer Gul1,*, Muhammad Awais1, Saira Jabeen2, Muhammad Farooq3

    Journal of Renewable Materials, Vol.8, No.10, pp. 1305-1326, 2020, DOI:10.32604/jrm.2020.010037

    Abstract This review efficiently covers the research progress in the area of polymer bio composites in perspective of the modern-day renewable materials. In the last decade, attraction towards the bio-composite based systems has been the topic of interest due to their potential as a substitute of conventional materials produced in important manufacturing industries. Recently, preparation of biocompatible and biodegradable polymer composites is an important achievement as an alternative of petrochemical based renewable products. Successful production of eco-friendly bio-composite materials have been achieved with natural fibers viz jute, bamboo, hair, flex, wool, silk and many others instead of synthesized fibers like carbon,… More >

  • Open Access


    On Designing Biopolymer-Bound Soil Composites (BSC) for Peak Compressive Strength

    Isamar Rosa1, Henning Roedel1, Maria I. Allende1, Michael D. Lepech1,*, David J. Loftus2

    Journal of Renewable Materials, Vol.8, No.8, pp. 845-861, 2020, DOI:10.32604/jrm.2020.09844

    Abstract Biopolymer-bound Soil Composites (BSC), are a novel bio-based construction material class, produced through the mixture and desiccation of biopolymers with inorganic aggregates with applications in soil stabilization, brick creation and in situ construction on Earth and space. This paper introduces a mixture design methodology to produce maximum strength for a given soil-biopolymer combination. Twenty protein and sand mix designs were investigated, with varying amounts of biopolymer solution and compaction regimes during manufacture. The ultimate compressive strength, density, and shrinkage of BSC samples are reported. It is observed that the compressive strength of BSC materials increases proportional to tighter particle packing… More >

  • Open Access


    Composite Biomaterials Based on Poly(L-Lactic Acid) and Functionalized Cellulose Nanocrystals

    Mariia Stepanova1, Ilia Averianov1, Olga Solomakha1, Natalia Zabolotnykh2, Iosif Gofman1, Mikhail Serdobintsev2, Tatiana Vinogradova2, Viktor Korzhikov-Vlakh1,3, Evgenia Korzhikova-Vlakh1,3,*

    Journal of Renewable Materials, Vol.8, No.4, pp. 383-395, 2020, DOI:10.32604/jrm.2020.09206

    Abstract The biocomposite films were prepared from poly(L-lactic acid) and cellulose nanocrystals. To improve interfacial compatibility of hydrophilic cellulose nanocrystals with hydrophobic matrix polymer as well as to provide the osteoconductive properties, cellulose was functionalized with poly(glutamic acid). The modified cellulose nanocrystals were better distributed and less aggregated within the matrix, which was testified by scanning electron, optical and polarized light microscopy. According to mechanical tests, composites filled with nanocrystals modified with PGlu demonstrated higher values of Young’s modulus, elongation at break and tensile strength. Incubation of composite materials in model buffer solutions for 30 weeks followed with staining of Ca2+More >

  • Open Access


    Nonlinear Micromechanical Modelling of Transverse Tensile Damage Behavior in Fiber-Reinforced Polymer Composites

    Nian Li*

    Structural Durability & Health Monitoring, Vol.13, No.4, pp. 331-346, 2019, DOI:10.32604/sdhm.2019.07521

    Abstract The investigation focusing on the mechanical behaviors at the microstructural level in composite materials can provide valuable insight into the failure mechanisms at larger scales. A micromechanics damage model which comprises the coupling of the matrix constitutive model and the cohesive zone (CZM) model at fiber-matrix interfaces is presented to evaluate the transverse tensile damage behaviors of unidirectional (UD) fiber-reinforced polymer (FRP) composites. For the polymeric matrix that exhibits highly non-linear mechanical responses, special focus is paid on the formulation of the constitutive model, which characterizes a mixture of elasticity, plasticity as well as damage. The proposed constitutive model includes… More >

  • Open Access


    Material Selection of a Natural Fibre Reinforced Polymer Composites using an Analytical Approach

    M. Noryani1, 3, 5, S. M. Sapuan1, 2,*, M. T. Mastura4, 5, M. Y. M. Zuhri1, E. S. Zainudin1

    Journal of Renewable Materials, Vol.7, No.11, pp. 1165-1179, 2019, DOI:10.32604/jrm.2019.07691

    Abstract Material selection has become a critical part of design for engineers, due to availability of diverse choice of materials that have similar properties and meet the product design specification. Implementation of statistical analysis alone makes it difficult to identify the ideal composition of the final composite. An integrated approach between statistical model and micromechanical model is desired. In this paper, resultant natural fibre and polymer matrix from previous study is used to estimate the mechanical properties such as density, Young’s modulus and tensile strength. Four levels of fibre loading are used to compare the optimum natural fibre reinforced polymer composite… More >

  • Open Access


    Modeling of moisture diffusion in permeable fiber-reinforced polymer composites using heterogeneous hybrid moisture element method

    De-Shin Liu, Zhen-Wei Zhuang, Cho-Liang Chung

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.2, pp. 39-40, 2011, DOI:10.3970/icces.2011.019.039

    Abstract A two-dimensional heterogeneous hybrid moisture element method (HHMEM) for modeling transient moisture diffusion in permeable fiber-reinforced polymer composites is proposed in this paper.
    The HHMEM scheme is based on a heterogeneous hybrid moisture element (HHME), whose properties are determined by equivalent moisture capacitance and conductance matrixes calculated using the conventional finite element formulation with the similarity mass/stiffness property and matrix condensing operations. A coupled HHME-FE scheme is developed and implemented in computer codes MATLAB to analyze the transient moisture diffusion characteristics of polymeric composite materials containing multiple permeable fibers. The analysis commences by comparing the performance of the proposed… More >

Displaying 1-10 on page 1 of 16. Per Page