Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Ponzi Scheme Detection for Smart Contracts Based on Oversampling

    Yafei Liu1,2, Yuling Chen1,2,*, Xuewei Wang3, Yuxiang Yang2, Chaoyue Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069152 - 10 November 2025

    Abstract As blockchain technology rapidly evolves, smart contracts have seen widespread adoption in financial transactions and beyond. However, the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems. Although numerous detection techniques have been proposed, existing methods suffer from significant limitations, such as class imbalance and insufficient modeling of transaction-related semantic features. To address these challenges, this paper proposes an oversampling-based detection framework for Ponzi smart contracts. We enhance the Adaptive Synthetic Sampling (ADASYN) algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions. This enhancement facilitates the… More >

  • Open Access

    ARTICLE

    Detecting Ethereum Ponzi Scheme Based on Hybrid Sampling for Smart Contract

    Yuanjun Qu, Xiameng Si*, Haiyan Kang, Hanlin Zhou

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3111-3130, 2025, DOI:10.32604/cmc.2024.057368 - 17 February 2025

    Abstract With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors. Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the detection accuracy. To address the above issues, this paper proposes LT-SPSD… More >

  • Open Access

    ARTICLE

    Detecting Ethereum Ponzi Schemes Through Opcode Context Analysis and Oversampling-Based AdaBoost Algorithm

    Mengxiao Wang1,2, Jing Huang1,2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1023-1042, 2023, DOI:10.32604/csse.2023.039569 - 26 May 2023

    Abstract Due to the anonymity of blockchain, frequent security incidents and attacks occur through it, among which the Ponzi scheme smart contract is a classic type of fraud resulting in huge economic losses. Machine learning-based methods are believed to be promising for detecting ethereum Ponzi schemes. However, there are still some flaws in current research, e.g., insufficient feature extraction of Ponzi scheme smart contracts, without considering class imbalance. In addition, there is room for improvement in detection precision. Aiming at the above problems, this paper proposes an ethereum Ponzi scheme detection scheme through opcode context analysis… More >

  • Open Access

    ARTICLE

    Mining Bytecode Features of Smart Contracts to Detect Ponzi Scheme on Blockchain

    Xiajiong Shen1,3, Shuaimin Jiang2,3, Lei Zhang1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.3, pp. 1069-1085, 2021, DOI:10.32604/cmes.2021.015736 - 24 May 2021

    Abstract The emergence of smart contracts has increased the attention of industry and academia to blockchain technology, which is tamper-proofing, decentralized, autonomous, and enables decentralized applications to operate in untrustworthy environments. However, these features of this technology are also easily exploited by unscrupulous individuals, a typical example of which is the Ponzi scheme in Ethereum. The negative effect of unscrupulous individuals writing Ponzi scheme-type smart contracts in Ethereum and then using these contracts to scam large amounts of money has been significant. To solve this problem, we propose a detection model for detecting Ponzi schemes in… More >

Displaying 1-10 on page 1 of 4. Per Page