Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    Quantum Hierarchical Agglomerative Clustering Based on One Dimension Discrete Quantum Walk with Single-Point Phase Defects

    Gongde Guo1, Kai Yu1, Hui Wang2, Song Lin1, *, Yongzhen Xu1, Xiaofeng Chen3

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1397-1409, 2020, DOI:10.32604/cmc.2020.011399

    Abstract As an important branch of machine learning, clustering analysis is widely used in some fields, e.g., image pattern recognition, social network analysis, information security, and so on. In this paper, we consider the designing of clustering algorithm in quantum scenario, and propose a quantum hierarchical agglomerative clustering algorithm, which is based on one dimension discrete quantum walk with single-point phase defects. In the proposed algorithm, two nonclassical characters of this kind of quantum walk, localization and ballistic effects, are exploited. At first, each data point is viewed as a particle and performed this kind of quantum walk with a parameter,… More >

Displaying 1-10 on page 1 of 1. Per Page