Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete

    Guiwu Lin, Kaige Liu, Yuliang Chen*, Yunpeng Ji, Rui Jiang

    Journal of Renewable Materials, Vol.11, No.11, pp. 3957-3975, 2023, DOI:10.32604/jrm.2023.028290

    Abstract This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete. A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were conducted under a uniaxial compressive test. The failure modes, stress-strain whole curves, peak stress, peak strain, and energy dissipation capacity were systematically observed and revealed. Test results indicate that steel fiber has the best modification effect on energy dissipation capacity and the toughness index of recycled concrete, corresponding to the enhancement of 81.75% and 22.90% on average. The addition of polyvinyl alcohol fiber can effectively improve the… More > Graphic Abstract

    Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete

  • Open Access

    ARTICLE

    Effect of High Temperature Curing on the Frost Resistance of Recycled Aggregate Concrete and the Physical Properties of Second-Generation Recycled Coarse Aggregate under Freeze-Thaw Cycles

    Xintong Chen, Pinghua Zhu*, Xiancui Yan, Lei Yang, Huayu Wang

    Journal of Renewable Materials, Vol.11, No.6, pp. 2953-2967, 2023, DOI:10.32604/jrm.2023.027140

    Abstract With the emphasis on environmental issues, the recycling of waste concrete, even recycled concrete, has become a hot spot in the field of architecture. But the repeated recycling of waste concrete used in harsh environments is still a complex problem. This paper discusses the durability and recyclability of recycled aggregate concrete (RAC) as a prefabricated material in the harsh environment, the effect of high-temperature curing (60°C, 80°C, and 100°C) on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate (RCA2) of RAC after 300 freeze-thaw cycles were studied. The frost resistance of RAC was… More >

  • Open Access

    REVIEW

    Effect of Recycled Aggregate and Slag as Substitutes for Natural Aggregate and Cement on the Properties of Concrete: A Review

    Peng Zhang1,2, Wenshuai Wang1, Yuanxun Zheng1,*, Shaowei Hu2,3

    Journal of Renewable Materials, Vol.11, No.4, pp. 1853-1879, 2023, DOI:10.32604/jrm.2023.024981

    Abstract Using recycled aggregate (RA) and slag instead of natural aggregate (NA) and cement can reduce greenhouse gas emissions (GHGE) and achieve effective waste recovery. In recent years, RA has been widely used to replace NA in concrete. Every year, several researchers conduct investigations on the mechanical performance and durability of recycled aggregate concrete (RAC). Due to the loose and porous material properties of RA, the mechanical properties and durability of RAC, such as strength, carbonation resistance, permeability resistance and chloride ion penetration resistance, are greatly reduced compared with natural aggregate concrete. In contrast, concrete containing slag instead of NA and… More >

  • Open Access

    ARTICLE

    Compressive Performance of Fiber Reinforced Recycled Aggregate Concrete by Basalt Fiber Reinforced Polymer-Polyvinyl Chloride Composite Jackets

    Zhijie Fan1, Huaxin Liu1, Genjin Liu2,*, Xuezhi Wang1, Wenqi Cui1

    Journal of Renewable Materials, Vol.11, No.4, pp. 1763-1791, 2023, DOI:10.32604/jrm.2023.024319

    Abstract The development of recycled aggregate concrete (RAC) provides a new approach to limiting the waste of natural resources. In the present study, the mechanical properties and deformability of RACs were improved by adding basalt fibers (BFs) and using external restraints, such as a fiber-reinforced polymer (FRP) jacket or a PVC pipe. Samples were tested under axial compression. The results showed that RAC (50% replacement of aggregate) containing 0.2% BFs had the best mechanical properties. Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure. With different levels of BFs, the compressive strengths… More > Graphic Abstract

    Compressive Performance of Fiber Reinforced Recycled Aggregate Concrete by Basalt Fiber Reinforced Polymer-Polyvinyl Chloride Composite Jackets

  • Open Access

    ARTICLE

    Experimental Study on Compressive Strength of Recycled Aggregate Concrete under High Temperature

    Mohammad Akhtar1, Abdulsamee Halahla2, Amin Almasri3,*

    Structural Durability & Health Monitoring, Vol.15, No.4, pp. 335-348, 2021, DOI:10.32604/sdhm.2021.015988

    Abstract This research aims to study the effect of elevated temperature on the compressive strength evolution of concrete made with recycled aggregate. Demolished building concrete samples were collected from four different sites in Saudi Arabia, namely from Tabuk, Madina, Yanbu, and Riyadh. These concretes were crushed and recycled into aggregates to be used to make new concrete samples. These samples were tested for axial compressive strength at ages 3, 7, 14, and 28 days at ambient temperature. Samples of the same concrete mixes were subjected to the elevated temperature of 300°C and tested for compressive strength again. The experimental result reveals… More >

  • Open Access

    ARTICLE

    Finite Element Analysis on the Uniaxial Compressive Behavior of Concrete with Large-Size Recycled Coarse Aggregate

    Tan Li, Jianzhuang Xiao*, Amardeep Singh

    Journal of Renewable Materials, Vol.10, No.3, pp. 699-720, 2022, DOI:10.32604/jrm.2022.016898

    Abstract To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied. Large-sized recycled aggregates behave differently in the concrete matrix. To understand the influence on concrete matrix, a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar. The model was used to calculate the effect of large-size recycled coarse aggregate (LRCA) on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms. The factors such as the strength of new… More >

  • Open Access

    ARTICLE

    Experimental Study on the Axial Compression Behavior of Short Columns of Steel-Fiber-Reinforced Recycled Aggregate Concrete

    Chunyang Liu1,2,*, Jia Xu1, Yifan Gu1, Ruofan Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1129-1142, 2021, DOI:10.32604/fdmp.2021.017376

    Abstract In order to study the axial compression performances of short columns made of recycled aggregate concrete, four samples were designed with different recycled aggregate replacement rates and carbon fibre reinforced plastics (CFRP) sheets. Then, monotonic loading was implemented to assess the variation trends of their axial compression properties. The ABAQUS finite element software was also used to determined the compression performances. Good agreement between experimental and numerical results has been found for the different parameters being considered. As shown by the results, recycled coarse aggregates result in improved ductility and better deformation performance of the specimens. The failure of specimens… More >

  • Open Access

    ARTICLE

    Experimental and Theoretical Study on the Flexural Behavior of Recycled Concrete Beams Reinforced with GFRP Bars

    Xinzhan Chen1, Xiangqing Kong1,2,*, Ying Fu2,*, Wanting Sun1, Renguo Guan2

    Journal of Renewable Materials, Vol.9, No.6, pp. 1169-1188, 2021, DOI:10.32604/jrm.2021.014809

    Abstract This paper experimentally investigated the flexural behavior of reinforced recycled aggregate concrete (RAC) beams reinforced with glass fiber-reinforced polymer (GFRP) bars. A total of twelve beams were built and tested up to failure under four-point bending. The main parameters were reinforcement ratio (0.38%, 0.60%, and 1.17%), recycled aggregate replacement ratio (R = 0, 50%, and 100%) and longitudinal reinforcement types (GFRP and steel). The flexural capacity, failure modes, flexibility deformation, reinforcement strains and crack distribution of the tested beams were investigated and compared with the calculation models of American code ACI 440.1-R-15, Canadian code CSA S806-12 and ISIS-M03-07. The tested… More >

  • Open Access

    ARTICLE

    Bond Behavior between BFRP Bars and Hybrid Fiber Recycled Aggregate Concrete after High Temperature

    Boheng Zhu1, Huaxin Liu1,*, Genjin Liu2, Abasal Hussain2, Xiaofei Zhang3, Xuezhi Wang1

    Journal of Renewable Materials, Vol.9, No.3, pp. 507-521, 2021, DOI:10.32604/jrm.2021.013580

    Abstract The aim of this study is to improve the bond performance of basalt fiber reinforced polymer (BFRP) bars and recycled aggregate concrete (RAC) after being exposed to high temperatures. The bond behavior (failure modes, bond strength, bond stress-slip curves) between BFRP bars and hybrid fiber recycled aggregate concrete (HFRAC) after being exposed to temperatures ranging from 20°C up to 500°C was studied by using pull-out tests. The effect of high temperatures on mechanical properties of concrete (compressive strength, splitting tensile strength) and tensile strength of BFRP bars was also investigated. The bond strength decreased as the temperature increased and the… More >

  • Open Access

    ARTICLE

    Multi-Scale Investigation on Concrete Prepared with Recycled Aggregates from Different Parent Concrete

    Zhenhua Duan, Nv Han, Amardeep Singh, Jianzhuang Xiao*

    Journal of Renewable Materials, Vol.8, No.11, pp. 1375-1390, 2020, DOI:10.32604/jrm.2020.013044

    Abstract Recycled aggregates (RA) are frequently obtained from various unknown sources, which caused variation in properties among recycled aggre- gates concrete (RAC). This paper investigated the macro and microscopic proper- ties of RAC prepared with RAs originated from different parent concretes with 90-day strength ranging from 30 MPa to 100 MPa. These parent concretes were prepared in advance and crushed to produce RA of distinct qualities. The attached mortar content can reach up to 69% in the concrete with highest strength grade. The microscopic investigation on different RAC was conducted with the X-ray Micro-Computed Tomography scanning technique and image process. Experi-… More >

Displaying 1-10 on page 1 of 10. Per Page