Bushra Tayyaba1, Muhammad Usman Ghani Khan1,2,3, Talha Waheed2, Shaha Al-Otaibi4, Tanzila Saba3,*
CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2851-2864, 2025, DOI:10.32604/cmc.2025.060365
- 16 April 2025
Abstract Reference Evapotranspiration (ETo) is widely used to assess total water loss between land and atmosphere due to its importance in maintaining the atmospheric water balance, especially in agricultural and environmental management. Accurate estimation of ETo is challenging due to its dependency on multiple climatic variables, including temperature, humidity, and solar radiation, making it a complex multivariate time-series problem. Traditional machine learning and deep learning models have been applied to forecast ETo, achieving moderate success. However, the introduction of transformer-based architectures in time-series forecasting has opened new possibilities for more precise ETo predictions. In this study,… More >