Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Hybrid Forecasting Techniques for Renewable Energy Integration in Electricity Markets Using Fractional and Fractal Approach

    Tariq Ali1,2,*, Muhammad Ayaz1,2, Mohammad Hijji2, Imran Baig3, MI Mohamed Ershath4, Saleh Albelwi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3839-3858, 2025, DOI:10.32604/cmes.2025.073169 - 23 December 2025

    Abstract The integration of renewable energy sources into electricity markets presents significant challenges due to the inherent variability and uncertainty of power generation from wind, solar, and other renewables. Accurate forecasting is crucial for ensuring grid stability, optimizing market operations, and minimizing economic risks. This paper introduces a hybrid forecasting framework incorporating fractional-order statistical models, fractal-based feature engineering, and deep learning architectures to improve renewable energy forecasting accuracy. Fractional autoregressive integrated moving average (FARIMA) and fractional exponential smoothing (FETS) models are explored for capturing long-memory dependencies in energy time-series data. Additionally, multifractal detrended fluctuation analysis (MFDFA) More >

  • Open Access

    ARTICLE

    Optimization Configuration Method for Grid-Side Grid-Forming Energy Storage System Based on Genetic Algorithm

    Yuqian Qi*, Yanbo Che, Liangliang Liu, Jiayu Ni, Shangyuan Zhang

    Energy Engineering, Vol.122, No.10, pp. 3999-4017, 2025, DOI:10.32604/ee.2025.068054 - 30 September 2025

    Abstract The process of including renewable energy sources in power networks is moving quickly, so the need for innovative configuration solutions for grid-side ESS has grown. Among the new methods presented in this paper is GA-OCESE, which stands for Genetic Algorithm-based Optimization Configuration for Energy Storage in Electric Networks. This is one of the methods suggested in this study, which aims to enhance the sizing, positioning, and operational characteristics of structured ESS under dynamic grid conditions. Particularly, the aim is to maximize efficiency. A multiobjective genetic algorithm, the GA-OCESE framework, considers all these factors simultaneously. Besides… More >

  • Open Access

    ARTICLE

    Techno-Economic Feasibility Analysis of Grid-Connected Hybrid PV Power System in Brunei

    Khairul Eahsun Fahim1, Liyanage C. De Silva2, Sk. A. Shezan3,*, Md Ashraful Islam4, Md Shakib Hassan5, Hayati Yassin1,*, Naveed Ahmad6

    Energy Engineering, Vol.122, No.10, pp. 3985-3997, 2025, DOI:10.32604/ee.2025.066484 - 30 September 2025

    Abstract Around the world, there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources, such as fossil fuels. Following this worldwide trend, Brunei’s government has initiated several strategic programs aimed at encouraging the establishment of energy from renewable sources in the nation’s energy mix. These initiatives are designed not only to support environmental sustainability but also to make energy from renewable sources increasingly competitive in comparison to more conventional energy sources like gas and oil, which have historically dominated… More >

  • Open Access

    ARTICLE

    Enhancing Renewable Energy Integration: A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks

    Ali S. Alghamdi1,*, Mohamed A. Zohdy2, Saad Aldoihi3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1339-1370, 2024, DOI:10.32604/cmes.2024.048839 - 20 May 2024

    Abstract In the contemporary era, the global expansion of electrical grids is propelled by various renewable energy sources (RESs). Efficient integration of stochastic RESs and optimal power flow (OPF) management are critical for network optimization. This study introduces an innovative solution, the Gaussian Bare-Bones Levy Cheetah Optimizer (GBBLCO), addressing OPF challenges in power generation systems with stochastic RESs. The primary objective is to minimize the total operating costs of RESs, considering four functions: overall operating costs, voltage deviation management, emissions reduction, voltage stability index (VSI) and power loss mitigation. Additionally, a carbon tax is included in… More >

Displaying 1-10 on page 1 of 4. Per Page