Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (128)
  • Open Access

    ARTICLE

    An Investigation of Metal 3D Spheroidal Resonators Using a Body of Revolution Approach

    A. Vukovic1, P. Sewell1, T. M. Benson1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.2, pp. 171-190, 2010, DOI:10.3970/cmes.2010.055.171

    Abstract A fast and accurate method is developed for the analysis of a class of metal three-dimensional resonators with rotational symmetry. The analysis is formulated using the Body of Revolution approach and the Method of Analytical Regularization. This development is motivated by the need for three-dimensional analytical solvers that could enable fast and accurate analysis of photonic resonant structures which support very high Q whispering gallery modes and which are computationally challenging for numerical simulations. The paper outlines the formulation of the method and demonstrates the stability and the source of computation errors of the method. As a practical illustration, the… More >

  • Open Access

    ARTICLE

    Slow Rotation of an Axisymmetric Slip Particle about Its Axis of Revolution

    Yi W. Wan1, Huan J. Keh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.1, pp. 73-94, 2009, DOI:10.3970/cmes.2009.053.073

    Abstract The problem of the rotation of a rigid particle of revolution about its axis in a viscous fluid is studied theoretically in the steady limit of low Reynolds number. The fluid is allowed to slip at the surface of the particle. A singularity method based on the principle of distribution of a set of spherical singularities along the axis of revolution within a prolate particle or on the fundamental plane within an oblate particle is used to find the general solution for the fluid velocity field that satisfies the boundary condition at infinity. The slip condition on the surface of… More >

  • Open Access

    ARTICLE

    Matching Contours in Images through the use of Curvature, Distance to Centroid and Global Optimization with Order-Preserving Constraint

    Francisco P. M. Oliveira1, João Manuel R. S. Tavares1

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.1, pp. 91-110, 2009, DOI:10.3970/cmes.2009.043.091

    Abstract This paper presents a new methodology to establish the best global match of objects' contours in images. The first step is the extraction of the sets of ordered points that define the objects' contours. Then, by using the curvature value and its distance to the corresponded centroid for each point, an affinity matrix is built. This matrix contains information of the cost for all possible matches between the two sets of ordered points. Then, to determine the desired one-to-one global matching, an assignment algorithm based on dynamic programming is used. This algorithm establishes the global matching of the minimum global… More >

  • Open Access

    ARTICLE

    Micromechanical analysis of aligned and randomly oriented whisker-/ short fiber-reinforced composites

    S.H. Pyo1, H.K. Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.40, No.3, pp. 271-306, 2009, DOI:10.3970/cmes.2009.040.271

    Abstract This paper presents a micromechanical approach for predicting the elastic and multi-level damage response of aligned and randomly oriented whisker-/ short fiber-reinforced composites. Based on a combination of Eshelby's micromechanics and the evolutionary imperfect interface approach, the effective elastic moduli of the composites are derived explicitly. The modified Eshelby's tensor for spheroidal inclusions with slightly weakened interface [Qu (1993b)] is extended in the present study to model whiskers or short fibers having mild or severe imperfect interfaces. Aligned and random orientations of spheroidal reinforcements are considered. A multi-level damage model in accordance with the Weibull's probabilistic function is then incorporated… More >

  • Open Access

    ARTICLE

    Sensitivity of the Acoustic Scattering Problem in Prolate Spheroidal Geometry with Respect to Wavenumber and Shape

    D. Kourounis1, L.N. Gergidis1, A. Charalambopoulos1

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.3, pp. 185-202, 2008, DOI:10.3970/cmes.2008.028.185

    Abstract The sensitivity of analytical solutions of the direct acoustic scattering problem in prolate spheroidal geometry on the wavenumber and shape, is extensively investigated in this work. Using the well known Vekua transformation and the complete set of radiating "outwards'' eigensolutions of the Helmholtz equation, introduced in our previous work ([Charalambopoulos and Dassios(2002)], [Gergidis, Kourounis, Mavratzas, and Charalambopoulos (2007)]), the scattered field is expanded in terms of it, detouring so the standard spheroidal wave functions along with their inherent numerical deficiencies. An approach is employed for the determination of the expansion coefficients, which is optimal in the sense, that minimizes the… More >

  • Open Access

    ARTICLE

    Acoustic Scattering in Prolate Spheroidal Geometry via Vekua Tranformation -- Theory and Numerical Results

    L.N. Gergidis, D. Kourounis, S. Mavratzas, A. Charalambopoulos1

    CMES-Computer Modeling in Engineering & Sciences, Vol.21, No.2, pp. 157-176, 2007, DOI:10.3970/cmes.2007.021.157

    Abstract A new complete set of scattering eigensolutions of Helmholtz equation in spheroidal geometry is constructed in this paper. It is based on the extension to exterior boundary value problems of the well known Vekua transformation pair, which connects the kernels of Laplace and Helmholtz operators. The derivation of this set is purely analytic. It avoids the implication of the spheroidal wave functions along with their accompanying numerical deficiencies. Using this novel set of eigensolutions, we solve the acoustic scattering problem from a soft acoustic spheroidal scatterer, by expanding the scattered field in terms of it. Two approaches concerning the determination… More >

  • Open Access

    ARTICLE

    Localization Based Evolutionary Routing (LOBER) for Efficient Aggregation in Wireless Multimedia Sensor Networks

    Ashwinth Janarthanan1,*, Dhananjay Kumar1

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 895-912, 2019, DOI:10.32604/cmc.2019.06805

    Abstract Efficient aggregation in wireless sensor nodes helps reduce network traffic and reduce energy consumption. The objective of this work Localization Based Evolutionary Routing (LOBER) is to achieve global optimization for aggregation and WMSN lifetime. Improved localization is achieved by a novel Centroid Based Octant Localization (CBOL) technique considering an arbitrary hexagonal region. Geometric principles of hexagon are used to locate the unknown nodes in the centroid positions of partitioned regions. Flower pollination algorithm, a meta heuristic evolutionary algorithm that is extensively applied in solving real life, complex and nonlinear optimization problems in engineering and industry is modified as Enhanced Flower… More >

  • Open Access

    ARTICLE

    Fingerprint Liveness Detection from Different Fingerprint Materials Using Convolutional Neural Network and Principal Component Analysis

    Chengsheng Yuan1,2,3, Xinting Li3, Q. M. Jonathan Wu3, Jin Li4,5, Xingming Sun1,2

    CMC-Computers, Materials & Continua, Vol.53, No.4, pp. 357-372, 2017, DOI:10.3970/cmc.2017.053.357

    Abstract Fingerprint-spoofing attack often occurs when imposters gain access illegally by using artificial fingerprints, which are made of common fingerprint materials, such as silicon, latex, etc. Thus, to protect our privacy, many fingerprint liveness detection methods are put forward to discriminate fake or true fingerprint. Current work on liveness detection for fingerprint images is focused on the construction of complex handcrafted features, but these methods normally destroy or lose spatial information between pixels. Different from existing methods, convolutional neural network (CNN) can generate high-level semantic representations by learning and concatenating low-level edge and shape features from a large amount of labeled… More >

Displaying 121-130 on page 13 of 128. Per Page