Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17,772)
  • Open Access

    ARTICLE

    A Novel Analytical Technique of the Fractional Bagley-Torvik Equations for Motion of a Rigid Plate in Newtonian Fluids

    Mahmoud H. Taha1, Mohamed A. Ramadan2,*, Dumitru Baleanu3,4,5, Galal M. Moatimid1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 969-983, 2020, DOI:10.32604/cmes.2020.010942 - 21 August 2020

    Abstract The current paper is concerned with a modified Homotopy perturbation technique. This modification allows achieving an exact solution of an initial value problem of the fractional differential equation. The approach is powerful, effective, and promising in analyzing some classes of fractional differential equations for heat conduction problems and other dynamical systems. To crystallize the new approach, some illustrated examples are introduced. More >

  • Open Access

    ARTICLE

    Planar System-Masses in an Equilateral Triangle: Numerical Study within Fractional Calculus

    Dumitru Baleanu1,2, Behzad Ghanbari3, Jihad H. Asad4,*, Amin Jajarmi5, Hassan Mohammadi Pirouz5

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 953-968, 2020, DOI:10.32604/cmes.2020.010236 - 21 August 2020

    Abstract In this work, a system of three masses on the vertices of equilateral triangle is investigated. This system is known in the literature as a planar system. We first give a description to the system by constructing its classical Lagrangian. Secondly, the classical Euler-Lagrange equations (i.e., the classical equations of motion) are derived. Thirdly, we fractionalize the classical Lagrangian of the system, and as a result, we obtain the fractional Euler-Lagrange equations. As the final step, we give the numerical simulations of the fractional model, a new model which is based on Caputo fractional derivative. More >

  • Open Access

    ARTICLE

    Numerical Simulation on Oil Spilling of Submarine Pipeline and Its Evolution on Sea Surface

    Yi Wang*, Mohan Lin

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 885-914, 2020, DOI:10.32604/cmes.2020.09810 - 21 August 2020

    Abstract Due to the interaction and corrosion of the seawater, submarine pipelines are easy to be broken to spill oil. The special environment of subsea restricts the technical development of pipeline maintenance. Therefore, the study on the oil spilling model of submarine pipeline is very important for predicting the movement and diffusion of spilled oil, so that oil spilling traces and relating strategies can be determined. This paper aims to establish an oil spilling model of a submarine pipeline, study the movement characteristics of spilled oil in seawater by numerical simulation, and determine the traces, diffusion… More >

  • Open Access

    ARTICLE

    Interpolating Isogeometric Boundary Node Method and Isogeometric Boundary Element Method Based on Parameter Space

    Hongyin Yang1,2, Jiwei Zhong1,*, Ying Wang3, Xingquan Chen2, Xiaoya Bian2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 807-824, 2020, DOI:10.32604/cmes.2020.010936 - 21 August 2020

    Abstract In this paper, general interpolating isogeometric boundary node method (IIBNM) and isogeometric boundary element method (IBEM) based on parameter space are proposed for 2D elasticity problems. In both methods, the integral cells and elements are defined in parameter space, which can reproduce the geometry exactly at all the stages. In IIBNM, the improved interpolating moving leastsquare method (IIMLS) is applied for field approximation and the shape functions have the delta function property. The Lagrangian basis functions are used for field approximation in IBEM. Thus, the boundary conditions can be imposed directly in both methods. The More >

  • Open Access

    ARTICLE

    Milling Parameters Optimization of Al-Li Alloy Thin-Wall Workpieces Using Response Surface Methodology and Particle Swarm Optimization

    Haitao Yue1, Chenguang Guo1,*, Qiang Li1, Lijuan Zhao1, Guangbo Hao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 937-952, 2020, DOI:10.32604/cmes.2020.010565 - 21 August 2020

    Abstract To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption. Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based on Response Surface Methodology was carried out. The single factor and interaction of milling parameters on surface roughness and specific cutting energy were analyzed, and the multi-objective optimization model was constructed. The Multiobjective Particle Swarm Optimization algorithm introducing the Chaos Local Search algorithm and the adaptive inertial weight was applied to determine the optimal combination of milling parameters. It was observed that surface roughness… More >

  • Open Access

    ARTICLE

    A Differential Quadrature Based Approach for Volterra Partial Integro-Differential Equation with a Weakly Singular Kernel

    Siraj-ul-Islam1, Arshed Ali2,*, Aqib Zafar1, Iltaf Hussain1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 915-935, 2020, DOI:10.32604/cmes.2020.011218 - 21 August 2020

    Abstract Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency, and is mentioned as potential alternative of conventional numerical methods. In this paper, a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel. The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative. The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation (IDE). The More >

  • Open Access

    ARTICLE

    Probabilistic Life Calculation Method of NdFeB Based on Brittle Fatigue Damage Model

    Lei Li, Guolai Yang*, Jiahao Li

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 865-884, 2020, DOI:10.32604/cmes.2020.010720 - 21 August 2020

    Abstract This paper proposes a probabilistic life calculation method of NdFeB based on brittle fatigue damage model. Firstly, Zhu-Wang-Tang (ZWT) constitutive model considering strain rate is established, and based on this, a numerical co-simulation model for NdFeB life calculation is constructed. The life distribution diagram of NdFeB under different stress levels is obtained after simulation. Secondly, a new model of brittle fatigue damage based on brittle damage mechanism is proposed. Then the parameters in the model are identified according to the life distribution diagram of NdFeB and the parameter distribution of the damage evolution model when More >

  • Open Access

    ARTICLE

    Fractional Analysis of Thin Film Flow of Non-Newtonian Fluid

    Farnaz Ismail1, Mubashir Qayyum2, *, Syed Inayat Ali Shah1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 825-845, 2020, DOI:10.32604/cmes.2020.011073 - 21 August 2020

    Abstract Modeling and analysis of thin film flow with respect to magneto hydro dynamical effect has been an important theme in the field of fluid dynamics, due to its vast industrial applications. The analysis involves studying the behavior and response of governing equations on the basis of various parameters such as thickness of the film, film surface profile, shear stress, liquid velocity, volumetric flux, vorticity, gravity, viscosity among others, along with different boundary conditions. In this article, we extend this analysis in fractional space using a homotopy based scheme, considering the case of a Non-Newtonian Pseudo-Plastic… More >

  • Open Access

    ARTICLE

    An Improved Binary Search Anti-Collision Protocol for RFID Tag Identification

    Guozhong Dong1, Weizhe Zhang1, 2, *, Sichang Xuan3, Feng Qin4, Haowen Tan5

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1855-1868, 2020, DOI:10.32604/cmc.2020.09919 - 20 August 2020

    Abstract Radio frequency identification (RFID) has been widespread used in massive items tagged domains. However, tag collision increases both time and energy consumption of RFID network. Tag collision can seriously affect the success of tag identification. An efficient anti-collision protocol is very crucially in RFID system. In this paper, an improved binary search anti-collision protocol namely BRTP is proposed to cope with the tag collision concern, which introduces a Bi-response mechanism. In Biresponse mechanism, two groups of tags allowed to reply to the reader in the same slot. According to Bi-response mechanism, the BRTP strengthens the More >

  • Open Access

    ARTICLE

    Research on Data Extraction and Analysis of Software Defect in IoT Communication Software

    Wenbin Bi1, Fang Yu2, Ning Cao3, Wei Huo3, Guangsheng Cao4, *, Xiuli Han5, Lili Sun6, Russell Higgs7

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1837-1854, 2020, DOI:10.32604/cmc.2020.010420 - 20 August 2020

    Abstract Software defect feature selection has problems of feature space dimensionality reduction and large search space. This research proposes a defect prediction feature selection framework based on improved shuffled frog leaping algorithm (ISFLA).Using the two-level structure of the framework and the improved hybrid leapfrog algorithm's own advantages, the feature values are sorted, and some features with high correlation are selected to avoid other heuristic algorithms in the defect prediction that are easy to produce local The case where the convergence rate of the optimal or parameter optimization process is relatively slow. The framework improves generalization of… More >

Displaying 12571-12580 on page 1258 of 17772. Per Page