Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (936)
  • Open Access

    ARTICLE

    Enhancing Anomaly Detection with Causal Reasoning and Semantic Guidance

    Weishan Gao1,2, Ye Wang1,2, Xiaoyin Wang1,2, Xiaochuan Jing1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073850 - 12 January 2026

    Abstract In the field of intelligent surveillance, weakly supervised video anomaly detection (WSVAD) has garnered widespread attention as a key technology that identifies anomalous events using only video-level labels. Although multiple instance learning (MIL) has dominated the WSVAD for a long time, its reliance solely on video-level labels without semantic grounding hinders a fine-grained understanding of visually similar yet semantically distinct events. In addition, insufficient temporal modeling obscures causal relationships between events, making anomaly decisions reactive rather than reasoning-based. To overcome the limitations above, this paper proposes an adaptive knowledge-based guidance method that integrates external structured… More >

  • Open Access

    ARTICLE

    CAWASeg: Class Activation Graph Driven Adaptive Weight Adjustment for Semantic Segmentation

    Hailong Wang1, Minglei Duan2, Lu Yao3, Hao Li1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072942 - 12 January 2026

    Abstract In image analysis, high-precision semantic segmentation predominantly relies on supervised learning. Despite significant advancements driven by deep learning techniques, challenges such as class imbalance and dynamic performance evaluation persist. Traditional weighting methods, often based on pre-statistical class counting, tend to overemphasize certain classes while neglecting others, particularly rare sample categories. Approaches like focal loss and other rare-sample segmentation techniques introduce multiple hyperparameters that require manual tuning, leading to increased experimental costs due to their instability. This paper proposes a novel CAWASeg framework to address these limitations. Our approach leverages Grad-CAM technology to generate class activation… More >

  • Open Access

    ARTICLE

    A Hybrid Approach to Software Testing Efficiency: Stacked Ensembles and Deep Q-Learning for Test Case Prioritization and Ranking

    Anis Zarrad1, Thomas Armstrong2, Jaber Jemai3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072768 - 12 January 2026

    Abstract Test case prioritization and ranking play a crucial role in software testing by improving fault detection efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage, ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes. We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score of 0.98847More >

  • Open Access

    ARTICLE

    Atomistic Insights into Aluminium–Boron Nitride Nanolayered Interconnects for High-Performance VLSI Systems

    Mallikarjun P. Y.1, Rame Gowda D. N.1, Trisha J. K.1, Varshini M.1, Poornesha S. Shetty1, Mandar Jatkar1,*, Arpan Shah2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072507 - 12 January 2026

    Abstract As circuit feature sizes approach the nanoscale, traditional Copper (Cu) interconnects face significant hurdles posed by rising resistance-capacitance (RC) delay, electromigration, and high power dissipation. These limitations impose constraints on the scalability and reliability of future semiconductor technologies. Our paper describes the new Vertical multilayer Aluminium Boron Nitride Nanoribbon (AlBN) interconnect structure, integrated with Density functional theory (DFT) using first-principles calculations. This study explores AlBN-based nanostructures with doping of 1Cu, 2Cu, 1Fe (Iron), and 2Fe for the application of Very Large Scale Integration (VLSI) interconnects. The AlBN structure utilized the advantages of vertical multilayer interconnects… More >

  • Open Access

    ARTICLE

    A Novel Semi-Supervised Multi-View Picture Fuzzy Clustering Approach for Enhanced Satellite Image Segmentation

    Pham Huy Thong1, Hoang Thi Canh2,3,*, Nguyen Tuan Huy4, Nguyen Long Giang1,*, Luong Thi Hong Lan4

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071776 - 12 January 2026

    Abstract Satellite image segmentation plays a crucial role in remote sensing, supporting applications such as environmental monitoring, land use analysis, and disaster management. However, traditional segmentation methods often rely on large amounts of labeled data, which are costly and time-consuming to obtain, especially in large-scale or dynamic environments. To address this challenge, we propose the Semi-Supervised Multi-View Picture Fuzzy Clustering (SS-MPFC) algorithm, which improves segmentation accuracy and robustness, particularly in complex and uncertain remote sensing scenarios. SS-MPFC unifies three paradigms: semi-supervised learning, multi-view clustering, and picture fuzzy set theory. This integration allows the model to effectively… More >

  • Open Access

    ARTICLE

    Suppression of Dry-Coupled Rubber Layer Interference in Ultrasonic Thickness Measurement: A Comparative Study of Empirical Mode Decomposition Variants

    Weichen Wang1, Shaofeng Wang1, Wenjing Liu1,*, Luncai Zhou2, Erqing Zhang1, Ting Gao3, Grigory Petrishin4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071278 - 08 January 2026

    Abstract In dry-coupled ultrasonic thickness measurement, thick rubber layers introduce high-amplitude parasitic echoes that obscure defect signals and degrade thickness accuracy. Existing methods struggle to resolve overlap-ping echoes under variable coupling conditions and non-stationary noise. This study proposes a novel dual-criterion framework integrating energy contribution and statistical impulsivity metrics to isolate specimen re-flections from coupling-layer interference. By decomposing A-scan signals into Intrinsic Mode Functions (IMFs), the framework employs energy contribution thresholds (>85%) and kurtosis indices (>3) to autonomously select IMFs containing valid specimen echoes. Hybrid time-frequency thresholding further suppresses interference through amplitude filtering and spectral focusing. More >

  • Open Access

    ARTICLE

    Advanced AI-Driven Cybersecurity Solutions: Intelligent Threat Detection, Explainability, and Adversarial Resilience

    Kirubavathi Ganapathiyappan1,*, Kiruba Marimuthu Eswaramoorthy1, Abi Thangamuthu Shanthamani1, Aksaya Venugopal1, Asita Pon Bhavya Iyyappan1, Thilaga Manickam1, Ateeq Ur Rehman2,*, Habib Hamam3,4,5,6

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.070067 - 09 December 2025

    Abstract The growing use of Portable Document Format (PDF) files across various sectors such as education, government, and business has inadvertently turned them into a major target for cyberattacks. Cybercriminals take advantage of the inherent flexibility and layered structure of PDFs to inject malicious content, often employing advanced obfuscation techniques to evade detection by traditional signature-based security systems. These conventional methods are no longer adequate, especially against sophisticated threats like zero-day exploits and polymorphic malware. In response to these challenges, this study introduces a machine learning-based detection framework specifically designed to combat such threats. Central to… More >

  • Open Access

    ARTICLE

    A Study on Improving the Accuracy of Semantic Segmentation for Autonomous Driving

    Bin Zhang*, Zhancheng Xu

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-12, 2026, DOI:10.32604/cmc.2025.069979 - 09 December 2025

    Abstract This study aimed to enhance the performance of semantic segmentation for autonomous driving by improving the 2DPASS model. Two novel improvements were proposed and implemented in this paper: dynamically adjusting the loss function ratio and integrating an attention mechanism (CBAM). First, the loss function weights were adjusted dynamically. The grid search method is used for deciding the best ratio of 7:3. It gives greater emphasis to the cross-entropy loss, which resulted in better segmentation performance. Second, CBAM was applied at different layers of the 2D encoder. Heatmap analysis revealed that introducing it after the second… More >

  • Open Access

    ARTICLE

    Model Construction for Complex and Heterogeneous Data of Urban Road Traffic Congestion

    Jianchun Wen1, Minghao Zhu1,*, Bo Gao2, Zhaojian Liu1, Xuehan Li3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069671 - 09 December 2025

    Abstract Urban traffic generates massive and diverse data, yet most systems remain fragmented. Current approaches to congestion management suffer from weak data consistency and poor scalability. This study addresses this gap by proposing the Urban Traffic Congestion Unified Metadata Model (UTC-UMM). The goal is to provide a standardized and extensible framework for describing, extracting, and storing multisource traffic data in smart cities. The model defines a two-tier specification that organizes nine core traffic resource classes. It employs an eXtensible Markup Language (XML) Schema that connects general elements with resource-specific elements. This design ensures both syntactic and… More >

  • Open Access

    ARTICLE

    Semi-Fragile Image Watermarking Using Quantization-Based DCT for Tamper Localization

    Agit Amrullah, Ferda Ernawan*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069229 - 09 December 2025

    Abstract This paper proposes a tamper detection technique for semi-fragile watermarking using Quantization-based Discrete Cosine Transform (DCT) for tamper localization. In this study, the proposed embedding strategy is investigated by experimental tests over the diagonal order of the DCT coefficients. The cover image is divided into non-overlapping blocks of size 8 × 8 pixels. The DCT is applied to each block, and the coefficients are arranged using a zig-zag pattern within the block. In this study, the low-frequency coefficients are selected to examine the impact of the imperceptibility score and tamper detection accuracy. High accuracy of… More >

Displaying 1-10 on page 1 of 936. Per Page