Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (237)
  • Open Access

    ARTICLE

    L-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection

    Chuandong Qin1,2, Yu Cao1,*, Liqun Meng1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1975-1994, 2024, DOI:10.32604/cmc.2024.049228 - 15 May 2024

    Abstract Brain tumors come in various types, each with distinct characteristics and treatment approaches, making manual detection a time-consuming and potentially ambiguous process. Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes. Machine learning models have become key players in automating brain tumor detection. Gradient descent methods are the mainstream algorithms for solving machine learning models. In this paper, we propose a novel distributed proximal stochastic gradient descent approach to solve the L-Smooth Support Vector Machine (SVM) classifier for brain tumor detection. Firstly, the smooth hinge loss is… More >

  • Open Access

    REVIEW

    Plant Chemical Defenses against Insect Herbivores—Using the Wild Tobacco as a Model

    Guangwei Sun1,2,#, Xuanhao Zhang3,#, Yi Liu3, Liguang Chai2, Daisong Liu2, Zhenguo Chen1,*, Shiyou Lü3,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 641-659, 2024, DOI:10.32604/phyton.2024.049285 - 29 April 2024

    Abstract The Nicotiana genus, commonly known as tobacco, holds significant importance as a crucial economic crop. Confronted with an abundance of herbivorous insects that pose a substantial threat to yield, tobacco has developed a diverse and sophisticated array of mechanisms, establishing itself as a model of plant ecological defense. This review provides a concise overview of the current understanding of tobacco’s defense strategies against herbivores. Direct defenses, exemplified by its well-known tactic of secreting the alkaloid nicotine, serve as a potent toxin against a broad spectrum of herbivorous pests. Moreover, in response to herbivore attacks, tobacco enhances… More >

  • Open Access

    ARTICLE

    A Novel Foreign Object Detection Method in Transmission Lines Based on Improved YOLOv8n

    Yakui Liu1,2,3,*, Xing Jiang1, Ruikang Xu1, Yihao Cui1, Chenhui Yu1, Jingqi Yang1, Jishuai Zhou1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1263-1279, 2024, DOI:10.32604/cmc.2024.048864 - 25 April 2024

    Abstract The rapid pace of urban development has resulted in the widespread presence of construction equipment and increasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safe operation of the power grid. Machine vision technology, particularly object recognition technology, has been widely employed to identify foreign objects in transmission line images. Despite its wide application, the technique faces limitations due to the complex environmental background and other auxiliary factors. To address these challenges, this study introduces an improved YOLOv8n. The traditional stepwise convolution and pooling layers are replaced with a spatial-depth… More >

  • Open Access

    ARTICLE

    U-Net Inspired Deep Neural Network-Based Smoke Plume Detection in Satellite Images

    Ananthakrishnan Balasundaram1,2, Ayesha Shaik1,2,*, Japmann Kaur Banga2, Aman Kumar Singh2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 779-799, 2024, DOI:10.32604/cmc.2024.048362 - 25 April 2024

    Abstract Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have been identified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions is essential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcing emission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrial smoke plumes using freely accessible geo-satellite imagery. The existing system has so many lagging factors such as limitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timely response… More >

  • Open Access

    ARTICLE

    Levels of evidence and grades of recommendation supporting European society for medical oncology clinical practice guidelines

    MARKO SKELIN1,2,3,*, BRUNA PERKOV-STIPIČIN1, SANJA VUŠKOVIĆ4, MARINA ŠANDRK PLEHAČEK5, ANE BAŠIĆ6, DAVID ŠARČEVIĆ7, MAJA ILIĆ8, IVAN KREČAK2,3,9

    Oncology Research, Vol.32, No.5, pp. 807-815, 2024, DOI:10.32604/or.2024.048948 - 23 April 2024

    Abstract Background: The European Society for Medical Oncology (ESMO) guidelines are among the most comprehensive and widely used clinical practice guidelines (CPGs) globally. However, the level of scientific evidence supporting ESMO CPG recommendations has not been systematically investigated. This study assessed ESMO CPG levels of evidence (LOE) and grades of recommendations (GOR), as well as their trends over time across various cancer settings. Methods: We manually extracted every recommendation with the Infectious Diseases Society of America (IDSA) classification from each CPG. We examined the distribution of LOE and GOR in all available ESMO CPG guidelines across… More >

  • Open Access

    ARTICLE

    Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model

    Nazik Alturki1, Abdulaziz Altamimi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Shtwai Alsubai4, Marwan Omar5, Imran Ashraf6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3513-3534, 2024, DOI:10.32604/cmes.2023.045868 - 11 March 2024

    Abstract Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository. The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest neighbor (KNN) More >

  • Open Access

    ARTICLE

    Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis

    Xin Fan1,2, Shuqing Zhang1,2,*, Kaisheng Wu1,2, Wei Zheng1,2, Yu Ge1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1687-1711, 2024, DOI:10.32604/cmc.2023.046187 - 27 February 2024

    Abstract Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project. However, existing CPDP methods only consider linear correlations between features (indicators) of the source and target projects. These models are not capable of evaluating non-linear correlations between features when they exist, for example, when there are differences in data distributions between the source and target projects. As a result, the performance of such CPDP models is compromised. In this paper, this paper proposes a novel CPDP method based on… More >

  • Open Access

    ARTICLE

    Application of Polygonum minus Extract in Enhancing Drought Tolerance in Maize by Regulating Osmotic and Antioxidant System

    Mingzhao Han1, Susilawati Kasim1,*, Zhongming Yang2, Xi Deng2, Md Kamal Uddin1, Noor Baity Saidi3, Effyanti Mohd Shuib1

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 213-226, 2024, DOI:10.32604/phyton.2024.047150 - 27 February 2024

    Abstract Drought stress is a major factor affecting plant growth and crop yield production. Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts. To explore the effect of Polygonum minus extract (PME) in enhancing drought tolerance in plants, a study was set up in a glasshouse environment using 10 different treatment combinations. PME foliar application were designed in CRD and effects were closely observed related to the growth, physiology, and antioxidant system changes in maize (Zea mays L.) under well-watered and drought conditions. The seaweed extract (SWE) was used as a comparison.… More >

  • Open Access

    ARTICLE

    Stroke Risk Assessment Decision-Making Using a Machine Learning Model: Logistic-AdaBoost

    Congjun Rao1, Mengxi Li1, Tingting Huang2,*, Feiyu Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 699-724, 2024, DOI:10.32604/cmes.2023.044898 - 30 December 2023

    Abstract Stroke is a chronic cerebrovascular disease that carries a high risk. Stroke risk assessment is of great significance in preventing, reversing and reducing the spread and the health hazards caused by stroke. Aiming to objectively predict and identify strokes, this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost (Logistic-AB) based on machine learning. First, the categorical boosting (CatBoost) method is used to perform feature selection for all features of stroke, and 8 main features are selected to form a new index evaluation system to predict the risk of stroke. Second, the borderline… More >

  • Open Access

    ARTICLE

    Bifurcation Analysis of a Nonlinear Vibro-Impact System with an Uncertain Parameter via OPA Method

    Dongmei Huang1, Dang Hong2, Wei Li1,*, Guidong Yang1, Vesna Rajic3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 509-524, 2024, DOI:10.32604/cmes.2023.029215 - 22 September 2023

    Abstract In this paper, the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated. Firstly, by means of the orthogonal polynomial approximation (OPA) method, the nonlinear damping and stiffness are expanded into the linear combination of the state variable. The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of the mean value. Afterwards, the stochastic vibro-impact system can be turned into an equivalent high-dimensional deterministic non-smooth system. Two different Poincaré sections are chosen to analyze the bifurcation properties and… More >

Displaying 21-30 on page 3 of 237. Per Page