Sin-Ye Jhong1, Hui-Che Hsu1,2, Hsin-Hua Huang2, Chih-Hsien Hsia3,4,*, Yulius Harjoseputro2,5, Yung-Yao Chen2,*
CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.072633
- 10 February 2026
Abstract Automated grading of dandruff severity is a clinically significant but challenging task due to the inherent ordinal nature of severity levels and the high prevalence of label noise from subjective expert annotations. Standard classification methods fail to address these dual challenges, limiting their real-world performance. In this paper, a novel, three-phase training framework is proposed that learns a robust ordinal classifier directly from noisy labels. The approach synergistically combines a rank-based ordinal regression backbone with a cooperative, semi-supervised learning strategy to dynamically partition the data into clean and noisy subsets. A hybrid training objective is… More >