Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (118)
  • Open Access

    ARTICLE

    SNSVM: SqueezeNet-Guided SVM for Breast Cancer Diagnosis

    Jiaji Wang1, Muhammad Attique Khan2, Shuihua Wang1,3, Yudong Zhang1,3,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2201-2216, 2023, DOI:10.32604/cmc.2023.041191

    Abstract Breast cancer is a major public health concern that affects women worldwide. It is a leading cause of cancer-related deaths among women, and early detection is crucial for successful treatment. Unfortunately, breast cancer can often go undetected until it has reached advanced stages, making it more difficult to treat. Therefore, there is a pressing need for accurate and efficient diagnostic tools to detect breast cancer at an early stage. The proposed approach utilizes SqueezeNet with fire modules and complex bypass to extract informative features from mammography images. The extracted features are then utilized to train a support vector machine (SVM)… More >

  • Open Access

    ARTICLE

    Facial Expression Recognition Model Depending on Optimized Support Vector Machine

    Amel Ali Alhussan1, Fatma M. Talaat2, El-Sayed M. El-kenawy3, Abdelaziz A. Abdelhamid4,5, Abdelhameed Ibrahim6, Doaa Sami Khafaga1,*, Mona Alnaggar7

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 499-515, 2023, DOI:10.32604/cmc.2023.039368

    Abstract In computer vision, emotion recognition using facial expression images is considered an important research issue. Deep learning advances in recent years have aided in attaining improved results in this issue. According to recent studies, multiple facial expressions may be included in facial photographs representing a particular type of emotion. It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition. The main contribution of this paper is to propose a facial expression recognition model (FERM) depending on an optimized Support Vector Machine (SVM). To test the performance of the proposed model… More >

  • Open Access

    ARTICLE

    Plant Leaf Diseases Classification Using Improved K-Means Clustering and SVM Algorithm for Segmentation

    Mona Jamjoom1, Ahmed Elhadad2, Hussein Abulkasim3,*, Safia Abbas4

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 367-382, 2023, DOI:10.32604/cmc.2023.037310

    Abstract Several pests feed on leaves, stems, bases, and the entire plant, causing plant illnesses. As a result, it is vital to identify and eliminate the disease before causing any damage to plants. Manually detecting plant disease and treating it is pretty challenging in this period. Image processing is employed to detect plant disease since it requires much effort and an extended processing period. The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases, including Phytophthora infestans, Fusarium graminearum,… More >

  • Open Access

    ARTICLE

    Identifying Severity of COVID-19 Medical Images by Categorizing Using HSDC Model

    K. Ravishankar*, C. Jothikumar

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 613-635, 2023, DOI:10.32604/csse.2023.038343

    Abstract Since COVID-19 infections are increasing all over the world, there is a need for developing solutions for its early and accurate diagnosis is a must. Detection methods for COVID-19 include screening methods like Chest X-rays and Computed Tomography (CT) scans. More work must be done on preprocessing the datasets, such as eliminating the diaphragm portions, enhancing the image intensity, and minimizing noise. In addition to the detection of COVID-19, the severity of the infection needs to be estimated. The HSDC model is proposed to solve these problems, which will detect and classify the severity of COVID-19 from X-ray and CT-scan… More >

  • Open Access

    ARTICLE

    BFS-SVM Classifier for QoS and Resource Allocation in Cloud Environment

    A. Richard William1,*, J. Senthilkumar2, Y. Suresh2, V. Mohanraj2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 777-790, 2023, DOI:10.32604/csse.2023.031753

    Abstract In cloud computing Resource allocation is a very complex task. Handling the customer demand makes the challenges of on-demand resource allocation. Many challenges are faced by conventional methods for resource allocation in order to meet the Quality of Service (QoS) requirements of users. For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work. The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection (BFS) in the… More >

  • Open Access

    ARTICLE

    Classification of Electroencephalogram Signals Using LSTM and SVM Based on Fast Walsh-Hadamard Transform

    Saeed Mohsen1,2,*, Sherif S. M. Ghoneim3, Mohammed S. Alzaidi3, Abdullah Alzahrani3, Ashraf Mohamed Ali Hassan4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5271-5286, 2023, DOI:10.32604/cmc.2023.038758

    Abstract Classification of electroencephalogram (EEG) signals for humans can be achieved via artificial intelligence (AI) techniques. Especially, the EEG signals associated with seizure epilepsy can be detected to distinguish between epileptic and non-epileptic regions. From this perspective, an automated AI technique with a digital processing method can be used to improve these signals. This paper proposes two classifiers: long short-term memory (LSTM) and support vector machine (SVM) for the classification of seizure and non-seizure EEG signals. These classifiers are applied to a public dataset, namely the University of Bonn, which consists of 2 classes –seizure and non-seizure. In addition, a fast… More >

  • Open Access

    ARTICLE

    Image Splicing Detection Using Generalized Whittaker Function Descriptor

    Dumitru Baleanu1,2,3, Ahmad Sami Al-Shamayleh4, Rabha W. Ibrahim5,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3465-3477, 2023, DOI:10.32604/cmc.2023.037162

    Abstract Image forgery is a crucial part of the transmission of misinformation, which may be illegal in some jurisdictions. The powerful image editing software has made it nearly impossible to detect altered images with the naked eye. Images must be protected against attempts to manipulate them. Image authentication methods have gained popularity because of their use in multimedia and multimedia networking applications. Attempts were made to address the consequences of image forgeries by creating algorithms for identifying altered images. Because image tampering detection targets processing techniques such as object removal or addition, identifying altered images remains a major challenge in research.… More >

  • Open Access

    ARTICLE

    Imbalanced Data Classification Using SVM Based on Improved Simulated Annealing Featuring Synthetic Data Generation and Reduction

    Hussein Ibrahim Hussein1, Said Amirul Anwar2,*, Muhammad Imran Ahmad2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 547-564, 2023, DOI:10.32604/cmc.2023.036025

    Abstract Imbalanced data classification is one of the major problems in machine learning. This imbalanced dataset typically has significant differences in the number of data samples between its classes. In most cases, the performance of the machine learning algorithm such as Support Vector Machine (SVM) is affected when dealing with an imbalanced dataset. The classification accuracy is mostly skewed toward the majority class and poor results are exhibited in the prediction of minority-class samples. In this paper, a hybrid approach combining data pre-processing technique and SVM algorithm based on improved Simulated Annealing (SA) was proposed. Firstly, the data pre-processing technique which… More >

  • Open Access

    ARTICLE

    Moth Flame Optimization Based FCNN for Prediction of Bugs in Software

    C. Anjali*, Julia Punitha Malar Dhas, J. Amar Pratap Singh

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1241-1256, 2023, DOI:10.32604/iasc.2023.029678

    Abstract The software engineering technique makes it possible to create high-quality software. One of the most significant qualities of good software is that it is devoid of bugs. One of the most time-consuming and costly software procedures is finding and fixing bugs. Although it is impossible to eradicate all bugs, it is feasible to reduce the number of bugs and their negative effects. To broaden the scope of bug prediction techniques and increase software quality, numerous causes of software problems must be identified, and successful bug prediction models must be implemented. This study employs a hybrid of Faster Convolution Neural Network… More >

  • Open Access

    ARTICLE

    Multi-Tier Sentiment Analysis of Social Media Text Using Supervised Machine Learning

    Hameedur Rahman1, Junaid Tariq2,*, M. Ali Masood1, Ahmad F. Subahi3, Osamah Ibrahim Khalaf4, Youseef Alotaibi5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5527-5543, 2023, DOI:10.32604/cmc.2023.033190

    Abstract Sentiment Analysis (SA) is often referred to as opinion mining. It is defined as the extraction, identification, or characterization of the sentiment from text. Generally, the sentiment of a textual document is classified into binary classes i.e., positive and negative. However, fine-grained classification provides a better insight into the sentiments. The downside is that fine-grained classification is more challenging as compared to binary. On the contrary, performance deteriorates significantly in the case of multi-class classification. In this study, pre-processing techniques and machine learning models for the multi-class classification of sentiments were explored. To augment the performance, a multi-layer classification model… More >

Displaying 1-10 on page 1 of 118. Per Page