Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (129)
  • Open Access

    ARTICLE

    Sentiment Analysis Using E-Commerce Review Keyword-Generated Image with a Hybrid Machine Learning-Based Model

    Jiawen Li1,2, Yuesheng Huang1, Yayi Lu1, Leijun Wang1,*, Yongqi Ren1, Rongjun Chen1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1581-1599, 2024, DOI:10.32604/cmc.2024.052666

    Abstract In the context of the accelerated pace of daily life and the development of e-commerce, online shopping is a mainstream way for consumers to access products and services. To understand their emotional expressions in facing different shopping experience scenarios, this paper presents a sentiment analysis method that combines the e-commerce review keyword-generated image with a hybrid machine learning-based model, in which the Word2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence (AI). Subsequently, a hybrid Convolutional Neural Network and Support Vector Machine (CNN-SVM) model… More >

  • Open Access

    ARTICLE

    A Situational Awareness Method for Initial Insulation Fault of Distribution Network Based on Multi-Feature Index Comprehensive Evaluation

    Hao Bai1, Beiyuan Liu2,*, Hongwen Liu3, Jupeng Zeng2, Jian Ouyang4, Yipeng Liu1

    Energy Engineering, Vol.121, No.8, pp. 2191-2211, 2024, DOI:10.32604/ee.2024.049848

    Abstract Most ground faults in distribution network are caused by insulation deterioration of power equipment. It is difficult to find the insulation deterioration of the distribution network in time, and the development trend of the initial insulation fault is unknown, which brings difficulties to the distribution inspection. In order to solve the above problems, a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed. Firstly, the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network, and the… More >

  • Open Access

    ARTICLE

    Support Vector Machine (SVM) and Object Based Classification in Earth Linear Features Extraction: A Comparison

    Siti Aekbal Salleh1,2,*, Nafisah Khalid1, Natasha Danny6, Nurul Ain Mohd. Zaki2,3, Mustafa Ustuner4, Zulkiflee Abd Latif1,2, Vladimir Foronda5

    Revue Internationale de Géomatique, Vol.33, pp. 183-199, 2024, DOI:10.32604/rig.2024.050723

    Abstract Due to the spectral and spatial properties of pervious and impervious surfaces, image classification and information extraction in detailed, small-scale mapping of urban surface materials is quite difficult and complex. Emerging methods and innovations in image classification have centred on object-based classification techniques and various segmentation techniques, which are fundamental to this approach. Consequently, the purpose of this study is to determine which classification method is most suitable for extracting linear features in terms of techniques and performance by comparing two classification methods, pixel-based approach and object-based approach, using WorldView-2 satellite imagery to specifically highlight… More > Graphic Abstract

    Support Vector Machine (SVM) and Object Based Classification in Earth Linear Features Extraction: A Comparison

  • Open Access

    ARTICLE

    Developing a Model for Parkinson’s Disease Detection Using Machine Learning Algorithms

    Naif Al Mudawi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4945-4962, 2024, DOI:10.32604/cmc.2024.048967

    Abstract Parkinson’s disease (PD) is a chronic neurological condition that progresses over time. People start to have trouble speaking, writing, walking, or performing other basic skills as dopamine-generating neurons in some brain regions are injured or die. The patient’s symptoms become more severe due to the worsening of their signs over time. In this study, we applied state-of-the-art machine learning algorithms to diagnose Parkinson’s disease and identify related risk factors. The research worked on the publicly available dataset on PD, and the dataset consists of a set of significant characteristics of PD. We aim to apply… More >

  • Open Access

    ARTICLE

    Adaptive Cloud Intrusion Detection System Based on Pruned Exact Linear Time Technique

    Widad Elbakri1, Maheyzah Md. Siraj1,*, Bander Ali Saleh Al-rimy1, Sultan Noman Qasem2, Tawfik Al-Hadhrami3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3725-3756, 2024, DOI:10.32604/cmc.2024.048105

    Abstract Cloud computing environments, characterized by dynamic scaling, distributed architectures, and complex workloads, are increasingly targeted by malicious actors. These threats encompass unauthorized access, data breaches, denial-of-service attacks, and evolving malware variants. Traditional security solutions often struggle with the dynamic nature of cloud environments, highlighting the need for robust Adaptive Cloud Intrusion Detection Systems (CIDS). Existing adaptive CIDS solutions, while offering improved detection capabilities, often face limitations such as reliance on approximations for change point detection, hindering their precision in identifying anomalies. This can lead to missed attacks or an abundance of false alarms, impacting overall… More >

  • Open Access

    ARTICLE

    An Imbalanced Data Classification Method Based on Hybrid Resampling and Fine Cost Sensitive Support Vector Machine

    Bo Zhu*, Xiaona Jing, Lan Qiu, Runbo Li

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3977-3999, 2024, DOI:10.32604/cmc.2024.048062

    Abstract When building a classification model, the scenario where the samples of one class are significantly more than those of the other class is called data imbalance. Data imbalance causes the trained classification model to be in favor of the majority class (usually defined as the negative class), which may do harm to the accuracy of the minority class (usually defined as the positive class), and then lead to poor overall performance of the model. A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article, which is based on a new hybrid… More >

  • Open Access

    ARTICLE

    L-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection

    Chuandong Qin1,2, Yu Cao1,*, Liqun Meng1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1975-1994, 2024, DOI:10.32604/cmc.2024.049228

    Abstract Brain tumors come in various types, each with distinct characteristics and treatment approaches, making manual detection a time-consuming and potentially ambiguous process. Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes. Machine learning models have become key players in automating brain tumor detection. Gradient descent methods are the mainstream algorithms for solving machine learning models. In this paper, we propose a novel distributed proximal stochastic gradient descent approach to solve the L-Smooth Support Vector Machine (SVM) classifier for brain tumor detection. Firstly, the smooth hinge loss is… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

  • Open Access

    ARTICLE

    Polo-like kinase 1 as a biomarker predicts the prognosis and immunotherapy of breast invasive carcinoma patients

    JUAN SHEN1,#, WEIYU ZHANG2,3,#, QINQIN JIN2,3,#, FUYU GONG4,#, HEPING ZHANG5, HONGLIANG XU5, JIEJIE LI2,3, HUI YAO2,3, XIYA JIANG2,3, YINTING YANG2,3, LIN HONG2,3, JIE MEI2,3, YANG SONG6,*, SHUGUANG ZHOU2,3,7,*

    Oncology Research, Vol.32, No.2, pp. 339-351, 2024, DOI:10.32604/or.2023.030887

    Abstract Background: Invasive breast carcinoma (BRCA) is associated with poor prognosis and high risk of mortality. Therefore, it is critical to identify novel biomarkers for the prognostic assessment of BRCA. Methods: The expression data of polo-like kinase 1 (PLK1) in BRCA and the corresponding clinical information were extracted from TCGA and GEO databases. PLK1 expression was validated in diverse breast cancer cell lines by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Single sample gene set enrichment analysis (ssGSEA) was performed to evaluate immune infiltration in the BRCA microenvironment, and the random forest (RF) and… More >

  • Open Access

    ARTICLE

    Fusion of Region Extraction and Cross-Entropy SVM Models for Wheat Rust Diseases Classification

    Deepak Kumar1, Vinay Kukreja1, Ayush Dogra1,*, Bhawna Goyal2, Talal Taha Ali3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2097-2121, 2023, DOI:10.32604/cmc.2023.044287

    Abstract Wheat rust diseases are one of the major types of fungal diseases that cause substantial yield quality losses of 15%–20% every year. The wheat rust diseases are identified either through experienced evaluators or computerassisted techniques. The experienced evaluators take time to identify the disease which is highly laborious and too costly. If wheat rust diseases are predicted at the development stages, then fungicides are sprayed earlier which helps to increase wheat yield quality. To solve the experienced evaluator issues, a combined region extraction and cross-entropy support vector machine (CE-SVM) model is proposed for wheat rust More >

Displaying 1-10 on page 1 of 129. Per Page