Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (123)
  • Open Access

    ARTICLE

    L-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection

    Chuandong Qin1,2, Yu Cao1,*, Liqun Meng1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1975-1994, 2024, DOI:10.32604/cmc.2024.049228

    Abstract Brain tumors come in various types, each with distinct characteristics and treatment approaches, making manual detection a time-consuming and potentially ambiguous process. Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes. Machine learning models have become key players in automating brain tumor detection. Gradient descent methods are the mainstream algorithms for solving machine learning models. In this paper, we propose a novel distributed proximal stochastic gradient descent approach to solve the L-Smooth Support Vector Machine (SVM) classifier for brain tumor detection. Firstly, the smooth hinge loss is… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

  • Open Access

    ARTICLE

    Polo-like kinase 1 as a biomarker predicts the prognosis and immunotherapy of breast invasive carcinoma patients

    JUAN SHEN1,#, WEIYU ZHANG2,3,#, QINQIN JIN2,3,#, FUYU GONG4,#, HEPING ZHANG5, HONGLIANG XU5, JIEJIE LI2,3, HUI YAO2,3, XIYA JIANG2,3, YINTING YANG2,3, LIN HONG2,3, JIE MEI2,3, YANG SONG6,*, SHUGUANG ZHOU2,3,7,*

    Oncology Research, Vol.32, No.2, pp. 339-351, 2024, DOI:10.32604/or.2023.030887

    Abstract Background: Invasive breast carcinoma (BRCA) is associated with poor prognosis and high risk of mortality. Therefore, it is critical to identify novel biomarkers for the prognostic assessment of BRCA. Methods: The expression data of polo-like kinase 1 (PLK1) in BRCA and the corresponding clinical information were extracted from TCGA and GEO databases. PLK1 expression was validated in diverse breast cancer cell lines by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Single sample gene set enrichment analysis (ssGSEA) was performed to evaluate immune infiltration in the BRCA microenvironment, and the random forest (RF) and… More >

  • Open Access

    ARTICLE

    Fusion of Region Extraction and Cross-Entropy SVM Models for Wheat Rust Diseases Classification

    Deepak Kumar1, Vinay Kukreja1, Ayush Dogra1,*, Bhawna Goyal2, Talal Taha Ali3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2097-2121, 2023, DOI:10.32604/cmc.2023.044287

    Abstract Wheat rust diseases are one of the major types of fungal diseases that cause substantial yield quality losses of 15%–20% every year. The wheat rust diseases are identified either through experienced evaluators or computerassisted techniques. The experienced evaluators take time to identify the disease which is highly laborious and too costly. If wheat rust diseases are predicted at the development stages, then fungicides are sprayed earlier which helps to increase wheat yield quality. To solve the experienced evaluator issues, a combined region extraction and cross-entropy support vector machine (CE-SVM) model is proposed for wheat rust More >

  • Open Access

    ARTICLE

    EMU-Net: Automatic Brain Tumor Segmentation and Classification Using Efficient Modified U-Net

    Mohammed Aly1,*, Abdullah Shawan Alotaibi2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 557-582, 2023, DOI:10.32604/cmc.2023.042493

    Abstract Tumor segmentation is a valuable tool for gaining insights into tumors and improving treatment outcomes. Manual segmentation is crucial but time-consuming. Deep learning methods have emerged as key players in automating brain tumor segmentation. In this paper, we propose an efficient modified U-Net architecture, called EMU-Net, which is applied to the BraTS 2020 dataset. Our approach is organized into two distinct phases: classification and segmentation. In this study, our proposed approach encompasses the utilization of the gray-level co-occurrence matrix (GLCM) as the feature extraction algorithm, convolutional neural networks (CNNs) as the classification algorithm, and the… More >

  • Open Access

    ARTICLE

    SNSVM: SqueezeNet-Guided SVM for Breast Cancer Diagnosis

    Jiaji Wang1, Muhammad Attique Khan2, Shuihua Wang1,3, Yudong Zhang1,3,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2201-2216, 2023, DOI:10.32604/cmc.2023.041191

    Abstract Breast cancer is a major public health concern that affects women worldwide. It is a leading cause of cancer-related deaths among women, and early detection is crucial for successful treatment. Unfortunately, breast cancer can often go undetected until it has reached advanced stages, making it more difficult to treat. Therefore, there is a pressing need for accurate and efficient diagnostic tools to detect breast cancer at an early stage. The proposed approach utilizes SqueezeNet with fire modules and complex bypass to extract informative features from mammography images. The extracted features are then utilized to train… More >

  • Open Access

    ARTICLE

    Facial Expression Recognition Model Depending on Optimized Support Vector Machine

    Amel Ali Alhussan1, Fatma M. Talaat2, El-Sayed M. El-kenawy3, Abdelaziz A. Abdelhamid4,5, Abdelhameed Ibrahim6, Doaa Sami Khafaga1,*, Mona Alnaggar7

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 499-515, 2023, DOI:10.32604/cmc.2023.039368

    Abstract In computer vision, emotion recognition using facial expression images is considered an important research issue. Deep learning advances in recent years have aided in attaining improved results in this issue. According to recent studies, multiple facial expressions may be included in facial photographs representing a particular type of emotion. It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition. The main contribution of this paper is to propose a facial expression recognition model (FERM) depending on an optimized Support Vector Machine (SVM). To test the… More >

  • Open Access

    ARTICLE

    Plant Leaf Diseases Classification Using Improved K-Means Clustering and SVM Algorithm for Segmentation

    Mona Jamjoom1, Ahmed Elhadad2, Hussein Abulkasim3,*, Safia Abbas4

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 367-382, 2023, DOI:10.32604/cmc.2023.037310

    Abstract Several pests feed on leaves, stems, bases, and the entire plant, causing plant illnesses. As a result, it is vital to identify and eliminate the disease before causing any damage to plants. Manually detecting plant disease and treating it is pretty challenging in this period. Image processing is employed to detect plant disease since it requires much effort and an extended processing period. The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases, More >

  • Open Access

    ARTICLE

    Identifying Severity of COVID-19 Medical Images by Categorizing Using HSDC Model

    K. Ravishankar*, C. Jothikumar

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 613-635, 2023, DOI:10.32604/csse.2023.038343

    Abstract Since COVID-19 infections are increasing all over the world, there is a need for developing solutions for its early and accurate diagnosis is a must. Detection methods for COVID-19 include screening methods like Chest X-rays and Computed Tomography (CT) scans. More work must be done on preprocessing the datasets, such as eliminating the diaphragm portions, enhancing the image intensity, and minimizing noise. In addition to the detection of COVID-19, the severity of the infection needs to be estimated. The HSDC model is proposed to solve these problems, which will detect and classify the severity of… More >

  • Open Access

    ARTICLE

    BFS-SVM Classifier for QoS and Resource Allocation in Cloud Environment

    A. Richard William1,*, J. Senthilkumar2, Y. Suresh2, V. Mohanraj2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 777-790, 2023, DOI:10.32604/csse.2023.031753

    Abstract In cloud computing Resource allocation is a very complex task. Handling the customer demand makes the challenges of on-demand resource allocation. Many challenges are faced by conventional methods for resource allocation in order to meet the Quality of Service (QoS) requirements of users. For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work. The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with… More >

Displaying 1-10 on page 1 of 123. Per Page