Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (141)
  • Open Access

    ARTICLE

    Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics

    Emad Sami Jaha*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3645-3678, 2025, DOI:10.32604/cmes.2025.068681 - 30 September 2025

    Abstract The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification. Among many feasible techniques for ear biometric recognition, convolutional neural network (CNN) models have recently offered high-performance and reliable systems. However, their performance can still be further improved using the capabilities of soft biometrics, a research question yet to be investigated. This research aims to augment the traditional CNN-based ear recognition performance by adding increased discriminatory ear soft biometric traits. It proposes a novel framework of augmented ear identification/verification using a group of discriminative categorical soft biometrics and deriving… More > Graphic Abstract

    Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics

  • Open Access

    ARTICLE

    An Adaptive Features Fusion Convolutional Neural Network for Multi-Class Agriculture Pest Detection

    Muhammad Qasim1,2, Syed M. Adnan Shah1, Qamas Gul Khan Safi1, Danish Mahmood2, Adeel Iqbal3,*, Ali Nauman3, Sung Won Kim3,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4429-4445, 2025, DOI:10.32604/cmc.2025.065060 - 19 May 2025

    Abstract Grains are the most important food consumed globally, yet their yield can be severely impacted by pest infestations. Addressing this issue, scientists and researchers strive to enhance the yield-to-seed ratio through effective pest detection methods. Traditional approaches often rely on preprocessed datasets, but there is a growing need for solutions that utilize real-time images of pests in their natural habitat. Our study introduces a novel two-step approach to tackle this challenge. Initially, raw images with complex backgrounds are captured. In the subsequent step, feature extraction is performed using both hand-crafted algorithms (Haralick, LBP, and Color… More >

  • Open Access

    ARTICLE

    Advanced Techniques for Dynamic Malware Detection and Classification in Digital Security Using Deep Learning

    Taher Alzahrani*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4575-4606, 2025, DOI:10.32604/cmc.2025.063448 - 19 May 2025

    Abstract The rapid evolution of malware presents a critical cybersecurity challenge, rendering traditional signature-based detection methods ineffective against novel variants. This growing threat affects individuals, organizations, and governments, highlighting the urgent need for robust malware detection mechanisms. Conventional machine learning-based approaches rely on static and dynamic malware analysis and often struggle to detect previously unseen threats due to their dependency on predefined signatures. Although machine learning algorithms (MLAs) offer promising detection capabilities, their reliance on extensive feature engineering limits real-time applicability. Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational overhead,… More >

  • Open Access

    ARTICLE

    DCS-SOCP-SVM: A Novel Integrated Sampling and Classification Algorithm for Imbalanced Datasets

    Xuewen Mu*, Bingcong Zhao

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2143-2159, 2025, DOI:10.32604/cmc.2025.060739 - 16 April 2025

    Abstract When dealing with imbalanced datasets, the traditional support vector machine (SVM) tends to produce a classification hyperplane that is biased towards the majority class, which exhibits poor robustness. This paper proposes a high-performance classification algorithm specifically designed for imbalanced datasets. The proposed method first uses a biased second-order cone programming support vector machine (B-SOCP-SVM) to identify the support vectors (SVs) and non-support vectors (NSVs) in the imbalanced data. Then, it applies the synthetic minority over-sampling technique (SV-SMOTE) to oversample the support vectors of the minority class and uses the random under-sampling technique (NSV-RUS) multiple times More >

  • Open Access

    ARTICLE

    Enhanced Particle Swarm Optimization Algorithm Based on SVM Classifier for Feature Selection

    Xing Wang1,*, Huazhen Liu1, Abdelazim G. Hussien2, Gang Hu1, Li Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2791-2839, 2025, DOI:10.32604/cmes.2025.058473 - 03 March 2025

    Abstract Feature selection (FS) is essential in machine learning (ML) and data mapping by its ability to preprocess high-dimensional data. By selecting a subset of relevant features, feature selection cuts down on the dimension of the data. It excludes irrelevant or surplus features, thus boosting the performance and efficiency of the model. Particle Swarm Optimization (PSO) boasts a streamlined algorithmic framework and exhibits rapid convergence traits. Compared with other algorithms, it incurs reduced computational expenses when tackling high-dimensional datasets. However, PSO faces challenges like inadequate convergence precision. Therefore, regarding FS problems, this paper presents a binary… More >

  • Open Access

    ARTICLE

    A New Approach for the Calculation of Slope Failure Probability with Fuzzy Limit-State Functions

    Jianing Hao1, Dan Yang2, Guanxiong Ren1, Ying Zhao3, Rangling Cao4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 141-159, 2025, DOI:10.32604/fdmp.2024.054469 - 24 January 2025

    Abstract This study presents an innovative approach to calculating the failure probability of slopes by incorporating fuzzy limit-state functions, a method that significantly enhances the accuracy and efficiency of slope stability analysis. Unlike traditional probabilistic techniques, this approach utilizes a least squares support vector machine (LSSVM) optimized with a grey wolf optimizer (GWO) and K-fold cross-validation (CV) to approximate the limit-state function, thus reducing computational complexity. The novelty of this work lies in its application to one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) slope models, demonstrating its versatility and high precision. The proposed method consistently achieves… More > Graphic Abstract

    A New Approach for the Calculation of Slope Failure Probability with Fuzzy Limit-State Functions

  • Open Access

    ARTICLE

    A Support Vector Machine (SVM) Model for Privacy Recommending Data Processing Model (PRDPM) in Internet of Vehicles

    Ali Alqarni*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 389-406, 2025, DOI:10.32604/cmc.2024.059238 - 03 January 2025

    Abstract Open networks and heterogeneous services in the Internet of Vehicles (IoV) can lead to security and privacy challenges. One key requirement for such systems is the preservation of user privacy, ensuring a seamless experience in driving, navigation, and communication. These privacy needs are influenced by various factors, such as data collected at different intervals, trip durations, and user interactions. To address this, the paper proposes a Support Vector Machine (SVM) model designed to process large amounts of aggregated data and recommend privacy-preserving measures. The model analyzes data based on user demands and interactions with service More >

  • Open Access

    ARTICLE

    A Robust Security Detection Strategy for Next Generation IoT Networks

    Hafida Assmi1, Azidine Guezzaz1, Said Benkirane1, Mourade Azrour2,*, Said Jabbour3, Nisreen Innab4, Abdulatif Alabdulatif5

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 443-466, 2025, DOI:10.32604/cmc.2024.059047 - 03 January 2025

    Abstract Internet of Things (IoT) refers to the infrastructures that connect smart devices to the Internet, operating autonomously. This connectivity makes it possible to harvest vast quantities of data, creating new opportunities for the emergence of unprecedented knowledge. To ensure IoT securit, various approaches have been implemented, such as authentication, encoding, as well as devices to guarantee data integrity and availability. Among these approaches, Intrusion Detection Systems (IDS) is an actual security solution, whose performance can be enhanced by integrating various algorithms, including Machine Learning (ML) and Deep Learning (DL), enabling proactive and accurate detection of… More >

  • Open Access

    ARTICLE

    A Hybrid WSVM-Levy Approach for Energy-Efficient Manufacturing Using Big Data and IoT

    Surbhi Bhatia Khan1,2,*, Mohammad Alojail3, Mahesh Thyluru Ramakrishna4, Hemant Sharma5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4895-4914, 2024, DOI:10.32604/cmc.2024.057585 - 19 December 2024

    Abstract In Intelligent Manufacturing, Big Data and industrial information enable enterprises to closely monitor and respond to precise changes in both internal processes and external environmental factors, ensuring more informed decision-making and adaptive system management. It also promotes decision making and provides scientific analysis to enhance the efficiency of the operation, cost reduction, maximizing the process of production and so on. Various methods are employed to enhance productivity, yet achieving sustainable manufacturing remains a complex challenge that requires careful consideration. This study aims to develop a methodology for effective manufacturing sustainability by proposing a novel Hybrid… More >

  • Open Access

    ARTICLE

    CHART: Intelligent Crime Hotspot Detection and Real-Time Tracking Using Machine Learning

    Rashid Ahmad1, Asif Nawaz1,*, Ghulam Mustafa1, Tariq Ali1, Mehdi Tlija2, Mohammed A. El-Meligy3,4, Zohair Ahmed5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4171-4194, 2024, DOI:10.32604/cmc.2024.056971 - 19 December 2024

    Abstract Crime hotspot detection is essential for law enforcement agencies to allocate resources effectively, predict potential criminal activities, and ensure public safety. Traditional methods of crime analysis often rely on manual, time-consuming processes that may overlook intricate patterns and correlations within the data. While some existing machine learning models have improved the efficiency and accuracy of crime prediction, they often face limitations such as overfitting, imbalanced datasets, and inadequate handling of spatiotemporal dynamics. This research proposes an advanced machine learning framework, CHART (Crime Hotspot Analysis and Real-time Tracking), designed to overcome these challenges. The proposed methodology… More >

Displaying 1-10 on page 1 of 141. Per Page