Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (398)
  • Open Access

    ARTICLE

    Optimal Structure Determination for Composite Laminates Using Particle Swarm Optimization and Machine Learning

    Viorel Mînzu1,*, Iulian Arama2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.075619 - 10 February 2026

    Abstract This work addresses optimality aspects related to composite laminates having layers with different orientations. Regression Neural Networks can model the mechanical behavior of these laminates, specifically the stress-strain relationship. If this model has strong generalization ability, it can be coupled with a metaheuristic algorithm–the PSO algorithm used in this article–to address an optimization problem (OP) related to the orientations of composite laminates. To solve OPs, this paper proposes an optimization framework (OFW) that connects the two components, the optimal solution search mechanism and the RNN model. The OFW has two modules: the search mechanism (Adaptive… More >

  • Open Access

    REVIEW

    Pigeon-Inspired Optimization Algorithm: Definition, Variants, and Its Applications in Unmanned Aerial Vehicles

    Yu-Xuan Zhou1, Kai-Qing Zhou1,*, Wei-Lin Chen1, Zhou-Hua Liao1, Di-Wen Kang1,2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075099 - 10 February 2026

    Abstract The Pigeon-Inspired Optimization (PIO) algorithm constitutes a metaheuristic method derived from the homing behaviour of pigeons. Initially formulated for three-dimensional path planning in unmanned aerial vehicles (UAVs), the algorithm has attracted considerable academic and industrial interest owing to its effective balance between exploration and exploitation, coupled with advantages in real-time performance and robustness. Nevertheless, as applications have diversified, limitations in convergence precision and a tendency toward premature convergence have become increasingly evident, highlighting a need for improvement. This review systematically outlines the developmental trajectory of the PIO algorithm, with a particular focus on its core… More >

  • Open Access

    ARTICLE

    An Overall Optimization Model Using Metaheuristic Algorithms for the CNN-Based IoT Attack Detection Problem

    Le Thi Hong Van1,*, Le Duc Thuan1, Pham Van Huong1, Nguyen Hieu Minh2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075027 - 10 February 2026

    Abstract Optimizing convolutional neural networks (CNNs) for IoT attack detection remains a critical yet challenging task due to the need to balance multiple performance metrics beyond mere accuracy. This study proposes a unified and flexible optimization framework that leverages metaheuristic algorithms to automatically optimize CNN configurations for IoT attack detection. Unlike conventional single-objective approaches, the proposed method formulates a global multi-objective fitness function that integrates accuracy, precision, recall, and model size (speed/model complexity penalty) with adjustable weights. This design enables both single-objective and weighted-sum multi-objective optimization, allowing adaptive selection of optimal CNN configurations for diverse deployment… More >

  • Open Access

    ARTICLE

    Leveraging Opposition-Based Learning in Particle Swarm Optimization for Effective Feature Selection

    Fei Yu1,2,3,*, Zhenya Diao1,2, Hongrun Wu1,2,*, Yingpin Chen1,3, Xuewen Xia1,2, Yuanxiang Li2,3,4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072593 - 10 February 2026

    Abstract Feature selection serves as a critical preprocessing step in machine learning, focusing on identifying and preserving the most relevant features to improve the efficiency and performance of classification algorithms. Particle Swarm Optimization has demonstrated significant potential in addressing feature selection challenges. However, there are inherent limitations in Particle Swarm Optimization, such as the delicate balance between exploration and exploitation, susceptibility to local optima, and suboptimal convergence rates, hinder its performance. To tackle these issues, this study introduces a novel Leveraged Opposition-Based Learning method within Fitness Landscape Particle Swarm Optimization, tailored for wrapper-based feature selection. The… More >

  • Open Access

    ARTICLE

    Real-Time Mouth State Detection Based on a BiGRU-CLPSO Hybrid Model with Facial Landmark Detection for Healthcare Monitoring Applications

    Mong-Fong Horng1,#, Thanh-Lam Nguyen1,#, Thanh-Tuan Nguyen2,*, Chin-Shiuh Shieh1,*, Lan-Yuen Guo3, Chen-Fu Hung4, Chun-Chih Lo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075064 - 29 January 2026

    Abstract The global population is rapidly expanding, driving an increasing demand for intelligent healthcare systems. Artificial intelligence (AI) applications in remote patient monitoring and diagnosis have achieved remarkable progress and are emerging as a major development trend. Among these applications, mouth motion tracking and mouth-state detection represent an important direction, providing valuable support for diagnosing neuromuscular disorders such as dysphagia, Bell’s palsy, and Parkinson’s disease. In this study, we focus on developing a real-time system capable of monitoring and detecting mouth state that can be efficiently deployed on edge devices. The proposed system integrates the Facial… More >

  • Open Access

    ARTICLE

    Energy Aware Task Scheduling of IoT Application Using a Hybrid Metaheuristic Algorithm in Cloud Computing

    Ahmed Awad Mohamed1, Eslam Abdelhakim Seyam2,*, Ahmed R. Elsaeed3, Laith Abualigah4, Aseel Smerat5,6, Ahmed M. AbdelMouty7, Hosam E. Refaat8

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073171 - 12 January 2026

    Abstract In recent years, fog computing has become an important environment for dealing with the Internet of Things. Fog computing was developed to handle large-scale big data by scheduling tasks via cloud computing. Task scheduling is crucial for efficiently handling IoT user requests, thereby improving system performance, cost, and energy consumption across nodes in cloud computing. With the large amount of data and user requests, achieving the optimal solution to the task scheduling problem is challenging, particularly in terms of cost and energy efficiency. In this paper, we develop novel strategies to save energy consumption across… More >

  • Open Access

    ARTICLE

    An Improved PID Controller Based on Artificial Neural Networks for Cathodic Protection of Steel in Chlorinated Media

    José Arturo Ramírez-Fernández1, Henevith G. Méndez-Figueroa1, Sebastián Ossandón2,*, Ricardo Galván-Martínez3, Miguel Ángel Hernández-Pérez3, Ricardo Orozco-Cruz3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072707 - 12 January 2026

    Abstract In this study, artificial neural networks (ANNs) were implemented to determine design parameters for an impressed current cathodic protection (ICCP) prototype. An ASTM A36 steel plate was tested in 3.5% NaCl solution, seawater, and NS4 using electrochemical impedance spectroscopy (EIS) to monitor the evolution of the substrate surface, which affects the current required to reach the protection potential (Eprot). Experimental data were collected as training datasets and analyzed using statistical methods, including box plots and correlation matrices. Subsequently, ANNs were applied to predict the current demand at different exposure times, enabling the estimation of electrochemical More >

  • Open Access

    ARTICLE

    Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm

    Binjiang Hu1,*, Yihua Zhu2, Liang Tu1,2, Zun Ma3, Xian Meng3, Kewei Xu3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069777 - 27 December 2025

    Abstract This paper proposes an equivalent modeling method for photovoltaic (PV) power stations via a particle swarm optimization (PSO) K-means clustering (KMC) algorithm with passive filter parameter clustering to address the complexities, simulation time cost and convergence problems of detailed PV power station models. First, the amplitude–frequency curves of different filter parameters are analyzed. Based on the results, a grouping parameter set for characterizing the external filter characteristics is established. These parameters are further defined as clustering parameters. A single PV inverter model is then established as a prerequisite foundation. The proposed equivalent method combines the… More >

  • Open Access

    ARTICLE

    A Q-Learning Improved Particle Swarm Optimization for Aircraft Pulsating Assembly Line Scheduling Problem Considering Skilled Operator Allocation

    Xiaoyu Wen1,2, Haohao Liu1,2, Xinyu Zhang1,2, Haoqi Wang1,2, Yuyan Zhang1,2, Guoyong Ye1,2, Hongwen Xing3, Siren Liu3, Hao Li1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.069492 - 10 November 2025

    Abstract Aircraft assembly is characterized by stringent precedence constraints, limited resource availability, spatial restrictions, and a high degree of manual intervention. These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling. To address this challenge, this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem (APALSP) under skilled operator allocation, with the objective of minimizing assembly completion time. A mathematical model considering skilled operator allocation is developed, and a Q-Learning improved Particle Swarm Optimization algorithm (QLPSO) is proposed. In the algorithm design, a reverse scheduling strategy is adopted to effectively… More >

  • Open Access

    ARTICLE

    Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization

    Songsong Zhang1, Huazhong Jin1,2,*, Zhiwei Ye1,2, Jia Yang1,2, Jixin Zhang1,2, Dongfang Wu1,2, Xiao Zheng1,2, Dingfeng Song1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068044 - 10 November 2025

    Abstract Multi-label feature selection (MFS) is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels. However, traditional centralized methods face significant challenges in privacy-sensitive and distributed settings, often neglecting label dependencies and suffering from low computational efficiency. To address these issues, we introduce a novel framework, Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization (DHBCPSO-MSR). Leveraging the federated learning paradigm, Fed-MFSDHBCPSO allows clients to perform local feature selection (FS) using DHBCPSO-MSR. Locally selected feature subsets are encrypted with differential privacy (DP) and transmitted… More >

Displaying 1-10 on page 1 of 398. Per Page