Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (187)
  • Open Access

    ARTICLE

    Lightweight Multi-Agent Edge Framework for Cybersecurity and Resource Optimization in Mobile Sensor Networks

    Fatima Al-Quayed*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069102 - 10 November 2025

    Abstract Due to the growth of smart cities, many real-time systems have been developed to support smart cities using Internet of Things (IoT) and emerging technologies. They are formulated to collect the data for environment monitoring and automate the communication process. In recent decades, researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations. However, the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity. These systems are vulnerable to a variety of cyberattacks, including unauthorized access,… More >

  • Open Access

    ARTICLE

    AI-Augmented Smart Irrigation System Using IoT and Solar Power for Sustainable Water and Energy Management

    Siwakorn Banluesapy, Mahasak Ketcham*, Montean Rattanasiriwongwut

    Energy Engineering, Vol.122, No.10, pp. 4261-4296, 2025, DOI:10.32604/ee.2025.068422 - 30 September 2025

    Abstract Traditional agricultural irrigation systems waste significant amounts of water and energy due to inefficient scheduling and the absence of real-time monitoring capabilities. This research developed a comprehensive IoT-based smart irrigation control system to optimize water and energy management in agricultural greenhouses while enhancing crop productivity. The system employs a sophisticated four-layer Internet of Things (IoT) architecture based on an ESP32 microcontroller, integrated with multiple environmental sensors, including soil moisture, temperature, humidity, and light intensity sensors, for comprehensive environmental monitoring. The system utilizes the Message Queuing Telemetry Transport (MQTT) communication protocol for reliable data transmission and… More >

  • Open Access

    ARTICLE

    Deep Auto-Encoder Based Intelligent and Secure Time Synchronization Protocol (iSTSP) for Security-Critical Time-Sensitive WSNs

    Ramadan Abdul-Rashid1, Mohd Amiruddin Abd Rahman1,*, Abdulaziz Yagoub Barnawi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3213-3250, 2025, DOI:10.32604/cmes.2025.066589 - 30 September 2025

    Abstract Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks (WSNs), especially in security-critical, time-sensitive applications. However, most existing protocols degrade substantially under malicious interference. We introduce iSTSP, an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust, precise synchronization even in hostile environments: (1) trust preprocessing that filters node participation using behavioral trust scoring; (2) anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time; (3) reliability-weighted consensus that prioritizes high-trust nodes during time aggregation; and (4) convergence-optimized synchronization… More >

  • Open Access

    ARTICLE

    Real-Time Communication Driver for MPU Accelerometer Using Predictable Non-Blocking I2C Communication

    Valentin Stangaciu*, Mihai-Vladimir Ghimpau, Adrian-Gabriel Sztanarec

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3213-3229, 2025, DOI:10.32604/cmc.2025.068844 - 23 September 2025

    Abstract Along with process control, perception represents the main function performed by the Edge Layer of an Internet of Things (IoT) network. Many of these networks implement various applications where the response time does not represent an important parameter. However, in critical applications, this parameter represents a crucial aspect. One important sensing device used in IoT designs is the accelerometer. In most applications, the response time of the embedded driver software handling this device is generally not analysed and not taken into account. In this paper, we present the design and implementation of a predictable real-time More >

  • Open Access

    ARTICLE

    Sine-Polynomial Chaotic Map (SPCM): A Decent Cryptographic Solution for Image Encryption in Wireless Sensor Networks

    David S. Bhatti1,*, Annas W. Malik2, Haeung Choi1, Ki-Il Kim3,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2157-2177, 2025, DOI:10.32604/cmc.2025.068360 - 29 August 2025

    Abstract Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies, limiting their use for lightweight, secure image encryption in resource-constrained Wireless Sensor Networks (WSNs). We propose the SPCM, a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions, leveraging a piecewise function to achieve a broad chaotic range () and a high Lyapunov exponent (5.04). Validated through nine benchmarks, including standard randomness tests, Diehard tests, and Shannon entropy (3.883), SPCM demonstrates superior randomness and high sensitivity to initial conditions. Applied to image encryption, SPCM achieves 0.152582 s (39% faster than some techniques) and 433.42 More >

  • Open Access

    REVIEW

    A Comprehensive Review on Urban Resilience via Fault-Tolerant IoT and Sensor Networks

    Hitesh Mohapatra*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 221-247, 2025, DOI:10.32604/cmc.2025.068338 - 29 August 2025

    Abstract Fault tolerance is essential for reliable and sustainable smart city infrastructure. Interconnected IoT systems must function under frequent faults, limited resources, and complex conditions. Existing research covers various fault-tolerant methods. However, current reviews often lack system-level critique and multidimensional analysis. This study provides a structured review of fault tolerance strategies across layered IoT architectures in smart cities. It evaluates fault detection, containment, and recovery techniques using specific metrics. These include fault visibility, propagation depth, containment score, and energy-resilience trade-offs. The analysis uses comparative tables, architecture-aware discussions, and conceptual plots. It investigates the impact of fault… More >

  • Open Access

    ARTICLE

    An Efficient Clustering Algorithm for Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks

    Peng Zhou1,2, Wei Chen1, Bingyu Cao1,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5337-5360, 2025, DOI:10.32604/cmc.2025.065561 - 30 July 2025

    Abstract Wireless Sensor Networks (WSNs), as a crucial component of the Internet of Things (IoT), are widely used in environmental monitoring, industrial control, and security surveillance. However, WSNs still face challenges such as inaccurate node clustering, low energy efficiency, and shortened network lifespan in practical deployments, which significantly limit their large-scale application. To address these issues, this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm (AC-ACO), aiming to optimize the energy utilization and system lifespan of WSNs. AC-ACO combines the path-planning capability of Ant Colony Optimization (ACO) with the dynamic characteristics of chaotic mapping and… More >

  • Open Access

    ARTICLE

    A Hybrid Framework Integrating Deterministic Clustering, Neural Networks, and Energy-Aware Routing for Enhanced Efficiency and Longevity in Wireless Sensor Network

    Muhammad Salman Qamar1,*, Muhammad Fahad Munir2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5463-5485, 2025, DOI:10.32604/cmc.2025.064442 - 30 July 2025

    Abstract Wireless Sensor Networks (WSNs) have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes (SNs). However, the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs. Current energy efficiency strategies, such as clustering, multi-hop routing, and data aggregation, face challenges, including uneven energy depletion, high computational demands, and suboptimal cluster head (CH) selection. To address these limitations, this paper proposes a hybrid methodology that optimizes energy consumption (EC) while maintaining network performance. The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic (LEACH-D) protocol using More >

  • Open Access

    ARTICLE

    Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation

    Xiaogang Yuan*, Huan Pei, Yanlin Wu

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5555-5575, 2025, DOI:10.32604/cmc.2025.063537 - 30 July 2025

    Abstract In the complex environment of Wireless Sensor Networks (WSNs), various malicious attacks have emerged, among which internal attacks pose particularly severe security risks. These attacks seriously threaten network stability, data transmission reliability, and overall performance. To effectively address this issue and significantly improve intrusion detection speed, accuracy, and resistance to malicious attacks, this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation (TIDM-DTE). This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust, communication trust, and energy consumption trust by focusing… More >

  • Open Access

    ARTICLE

    Deep Q-Learning Driven Protocol for Enhanced Border Surveillance with Extended Wireless Sensor Network Lifespan

    Nimisha Rajput1,#, Amit Kumar1, Raghavendra Pal1,#, Nishu Gupta2,*, Mikko Uitto2, Jukka Mäkelä2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3839-3859, 2025, DOI:10.32604/cmes.2025.065903 - 30 June 2025

    Abstract Wireless Sensor Networks (WSNs) play a critical role in automated border surveillance systems, where continuous monitoring is essential. However, limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time. To address this issue, this paper presents an innovative energy-efficient protocol based on deep Q-learning (DQN), specifically developed to prolong the operational lifespan of WSNs used in border surveillance. By harnessing the adaptive power of DQN, the proposed protocol dynamically adjusts node activity and communication patterns. This approach ensures optimal energy usage while maintaining high coverage, connectivity, and data accuracy. More >

Displaying 1-10 on page 1 of 187. Per Page