Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (120)
  • Open Access


    Multi-Class Sentiment Analysis of Social Media Data with Machine Learning Algorithms

    Galimkair Mutanov, Vladislav Karyukin*, Zhanl Mamykova

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 913-930, 2021, DOI:10.32604/cmc.2021.017827

    Abstract The volume of social media data on the Internet is constantly growing. This has created a substantial research field for data analysts. The diversity of articles, posts, and comments on news websites and social networks astonishes imagination. Nevertheless, most researchers focus on posts on Twitter that have a specific format and length restriction. The majority of them are written in the English language. As relatively few works have paid attention to sentiment analysis in the Russian and Kazakh languages, this article thoroughly analyzes news posts in the Kazakhstan media space. The amassed datasets include texts labeled according to three sentiment… More >

  • Open Access


    Sentiment Analysis of Short Texts Based on Parallel DenseNet

    Luqi Yan1, Jin Han1,*, Yishi Yue2, Liu Zhang2, Yannan Qian3

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 51-65, 2021, DOI:10.32604/cmc.2021.016920

    Abstract Text sentiment analysis is a common problem in the field of natural language processing that is often resolved by using convolutional neural networks (CNNs). However, most of these CNN models focus only on learning local features while ignoring global features. In this paper, based on traditional densely connected convolutional networks (DenseNet), a parallel DenseNet is proposed to realize sentiment analysis of short texts. First, this paper proposes two novel feature extraction blocks that are based on DenseNet and a multi-scale convolutional neural network. Second, this paper solves the problem of ignoring global features in traditional CNN models by combining the… More >

  • Open Access


    Ensemble Based Temporal Weighting and Pareto Ranking (ETP) Model for Effective Root Cause Analysis

    Naveen Kumar Seerangan1,*, S. Vijayaragavan Shanmugam2

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 819-830, 2021, DOI:10.32604/cmc.2021.012135

    Abstract Root-cause identification plays a vital role in business decision making by providing effective future directions for the organizations. Aspect extraction and sentiment extraction plays a vital role in identifying the root-causes. This paper proposes the Ensemble based temporal weighting and pareto ranking (ETP) model for Root-cause identification. Aspect extraction is performed based on rules and is followed by opinion identification using the proposed boosted ensemble model. The obtained aspects are validated and ranked using the proposed aspect weighing scheme. Pareto-rule based aspect selection is performed as the final selection mechanism and the results are presented for business decision making. Experiments… More >

  • Open Access


    A Generation Method of Letter-Level Adversarial Samples

    Huixuan Xu1, Chunlai Du1, Yanhui Guo2,*, Zhijian Cui1, Haibo Bai1

    Journal on Artificial Intelligence, Vol.3, No.2, pp. 45-53, 2021, DOI:10.32604/jai.2021.016305

    Abstract In recent years, with the rapid development of natural language processing, the security issues related to it have attracted more and more attention. Character perturbation is a common security problem. It can try to completely modify the input classification judgment of the target program without people’s attention by adding, deleting, or replacing several characters, which can reduce the effectiveness of the classifier. Although the current research has provided various methods of perturbation attacks on characters, the success rate of some methods is still not ideal. This paper mainly studies the sample generation of optimal perturbation characters and proposes a characterlevel… More >

  • Open Access


    Enhancement of Sentiment Analysis Using Clause and Discourse Connectives

    Kumari Sheeja Saraswathy, Sobha Lalitha Devi*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1983-1999, 2021, DOI:10.32604/cmc.2021.015661

    Abstract The sentiment of a text depends on the clausal structure of the sentence and the connectives’ discourse arguments. In this work, the clause boundary, discourse argument, and syntactic and semantic information of the sentence are used to assign the text’s sentiment. The clause boundaries identify the span of the text, and the discourse connectives identify the arguments. Since the lexicon-based analysis of traditional sentiment analysis gives the wrong sentiment of the sentence, a deeper-level semantic analysis is required for the correct analysis of sentiments. Hence, in this study, explicit connectives in Malayalam are considered to identify the discourse arguments. A… More >

  • Open Access


    Sentiment Analysis for Arabic Social Media News Polarity

    Adnan A. Hnaif1,*, Emran Kanan2, Tarek Kanan1

    Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 107-119, 2021, DOI:10.32604/iasc.2021.015939

    Abstract In recent years, the use of social media has rapidly increased and developed significant influence on its users. In the study of the behavior, reactions, approval, and interactions of social media users, detecting the polarity (positive, negative, neutral) of news posts is of considerable importance. This proposed research aims to collect data from Arabic social media pages, with the posts comprising the main unit in the dataset, and to build a corpus of manually-processed data for training and testing. Applying Natural Language Processing to the data is crucial for the computer to understand and easily manipulate the data. Therefore, Stop-Word… More >

  • Open Access


    Machine Learning-based USD/PKR Exchange Rate Forecasting Using Sentiment Analysis of Twitter Data

    Samreen Naeem1, Wali Khan Mashwani2,*, Aqib Ali1,3, M. Irfan Uddin4, Marwan Mahmoud5, Farrukh Jamal6, Christophe Chesneau7

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3451-3461, 2021, DOI:10.32604/cmc.2021.015872

    Abstract This study proposes an approach based on machine learning to forecast currency exchange rates by applying sentiment analysis to messages on Twitter (called tweets). A dataset of the exchange rates between the United States Dollar (USD) and the Pakistani Rupee (PKR) was formed by collecting information from a forex website as well as a collection of tweets from the business community in Pakistan containing finance-related words. The dataset was collected in raw form, and was subjected to natural language processing by way of data preprocessing. Response variable labeling was then applied to the standardized dataset, where the response variables were… More >

  • Open Access


    Computing the User Experience via Big Data Analysis: A Case of Uber Services

    Jang Hyun Kim1,2, Dongyan Nan1,*, Yerin Kim2, Min Hyung Park2

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 2819-2829, 2021, DOI:10.32604/cmc.2021.014922

    Abstract As of 2020, the issue of user satisfaction has generated a significant amount of interest. Therefore, we employ a big data approach for exploring user satisfaction among Uber users. We develop a research model of user satisfaction by expanding the list of user experience (UX) elements (i.e., pragmatic, expectation confirmation, hedonic, and burden) by including more elements, namely: risk, cost, promotion, anxiety, sadness, and anger. Subsequently, we collect 125,768 comments from online reviews of Uber services and perform a sentiment analysis to extract the UX elements. The results of a regression analysis reveal the following: hedonic, promotion, and pragmatic significantly… More >

  • Open Access


    COVID-19 Public Sentiment Insights: A Text Mining Approach to the Gulf Countries

    Saleh Albahli1, Ahmad Algsham1, Shamsulhaq Aeraj1, Muath Alsaeed1, Muath Alrashed1, Hafiz Tayyab Rauf2,*, Muhammad Arif3, Mazin Abed Mohammed4

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1613-1627, 2021, DOI:10.32604/cmc.2021.014265

    Abstract Social media has been the primary source of information from mainstream news agencies due to the large number of users posting their feedback. The COVID-19 outbreak did not only bring a virus with it but it also brought fear and uncertainty along with inaccurate and misinformation spread on social media platforms. This phenomenon caused a state of panic among people. Different studies were conducted to stop the spread of fake news to help people cope with the situation. In this paper, a semantic analysis of three levels (negative, neutral, and positive) is used to gauge the feelings of Gulf countries… More >

  • Open Access


    Aspect-Based Sentiment Analysis for Polarity Estimation of Customer Reviews on Twitter

    Ameen Banjar1, Zohair Ahmed2, Ali Daud1, Rabeeh Ayaz Abbasi3, Hussain Dawood4,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2203-2225, 2021, DOI:10.32604/cmc.2021.014226

    Abstract Most consumers read online reviews written by different users before making purchase decisions, where each opinion expresses some sentiment. Therefore, sentiment analysis is currently a hot topic of research. In particular, aspect-based sentiment analysis concerns the exploration of emotions, opinions and facts that are expressed by people, usually in the form of polarity. It is crucial to consider polarity calculations and not simply categorize reviews as positive, negative, or neutral. Currently, the available lexicon-based method accuracy is affected by limited coverage. Several of the available polarity estimation techniques are too general and may not reflect the aspect/topic in question if… More >

Displaying 101-110 on page 11 of 120. Per Page