Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (124)
  • Open Access

    ARTICLE

    Machine Learning-based USD/PKR Exchange Rate Forecasting Using Sentiment Analysis of Twitter Data

    Samreen Naeem1, Wali Khan Mashwani2,*, Aqib Ali1,3, M. Irfan Uddin4, Marwan Mahmoud5, Farrukh Jamal6, Christophe Chesneau7

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3451-3461, 2021, DOI:10.32604/cmc.2021.015872

    Abstract This study proposes an approach based on machine learning to forecast currency exchange rates by applying sentiment analysis to messages on Twitter (called tweets). A dataset of the exchange rates between the United States Dollar (USD) and the Pakistani Rupee (PKR) was formed by collecting information from a forex website as well as a collection of tweets from the business community in Pakistan containing finance-related words. The dataset was collected in raw form, and was subjected to natural language processing by way of data preprocessing. Response variable labeling was then applied to the standardized dataset,… More >

  • Open Access

    ARTICLE

    Computing the User Experience via Big Data Analysis: A Case of Uber Services

    Jang Hyun Kim1,2, Dongyan Nan1,*, Yerin Kim2, Min Hyung Park2

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 2819-2829, 2021, DOI:10.32604/cmc.2021.014922

    Abstract As of 2020, the issue of user satisfaction has generated a significant amount of interest. Therefore, we employ a big data approach for exploring user satisfaction among Uber users. We develop a research model of user satisfaction by expanding the list of user experience (UX) elements (i.e., pragmatic, expectation confirmation, hedonic, and burden) by including more elements, namely: risk, cost, promotion, anxiety, sadness, and anger. Subsequently, we collect 125,768 comments from online reviews of Uber services and perform a sentiment analysis to extract the UX elements. The results of a regression analysis reveal the following:… More >

  • Open Access

    ARTICLE

    COVID-19 Public Sentiment Insights: A Text Mining Approach to the Gulf Countries

    Saleh Albahli1, Ahmad Algsham1, Shamsulhaq Aeraj1, Muath Alsaeed1, Muath Alrashed1, Hafiz Tayyab Rauf2,*, Muhammad Arif3, Mazin Abed Mohammed4

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1613-1627, 2021, DOI:10.32604/cmc.2021.014265

    Abstract Social media has been the primary source of information from mainstream news agencies due to the large number of users posting their feedback. The COVID-19 outbreak did not only bring a virus with it but it also brought fear and uncertainty along with inaccurate and misinformation spread on social media platforms. This phenomenon caused a state of panic among people. Different studies were conducted to stop the spread of fake news to help people cope with the situation. In this paper, a semantic analysis of three levels (negative, neutral, and positive) is used to gauge… More >

  • Open Access

    ARTICLE

    Aspect-Based Sentiment Analysis for Polarity Estimation of Customer Reviews on Twitter

    Ameen Banjar1, Zohair Ahmed2, Ali Daud1, Rabeeh Ayaz Abbasi3, Hussain Dawood4,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2203-2225, 2021, DOI:10.32604/cmc.2021.014226

    Abstract Most consumers read online reviews written by different users before making purchase decisions, where each opinion expresses some sentiment. Therefore, sentiment analysis is currently a hot topic of research. In particular, aspect-based sentiment analysis concerns the exploration of emotions, opinions and facts that are expressed by people, usually in the form of polarity. It is crucial to consider polarity calculations and not simply categorize reviews as positive, negative, or neutral. Currently, the available lexicon-based method accuracy is affected by limited coverage. Several of the available polarity estimation techniques are too general and may not reflect… More >

  • Open Access

    ARTICLE

    COVID-19 Pandemic Data Predict the Stock Market

    Abdulaziz Almehmadi*

    Computer Systems Science and Engineering, Vol.36, No.3, pp. 451-460, 2021, DOI:10.32604/csse.2021.015309

    Abstract Unlike the 2007–2008 market crash, which was caused by a banking failure and led to an economic recession, the 1918 influenza pandemic triggered a worldwide financial depression. Pandemics usually affect the global economy, and the COVID-19 pandemic is no exception. Many stock markets have fallen over 40%, and companies are shutting down, ending contracts, and issuing voluntary and involuntary leaves for thousands of employees. These economic effects have led to an increase in unemployment rates, crime, and instability. Studying pandemics’ economic effects, especially on the stock market, has not been urgent or feasible until recently.… More >

  • Open Access

    ARTICLE

    Fast Sentiment Analysis Algorithm Based on Double Model Fusion

    Zhixing Lin1,2, Like Wang3,4, Xiaoli Cui5, Yongxiang Gu3,4,*

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 175-188, 2021, DOI:10.32604/csse.2021.014260

    Abstract Nowadays, as the number of textual data is exponentially increasing, sentiment analysis has become one of the most significant tasks in natural language processing (NLP) with increasing attention. Traditional Chinese sentiment analysis algorithms cannot make full use of the order information in context and are inefficient in sentiment inference. In this paper, we systematically reviewed the classic and representative works in sentiment analysis and proposed a simple but efficient optimization. First of all, FastText was trained to get the basic classification model, which can generate pre-trained word vectors as a by-product. Secondly, Bidirectional Long Short-Term More >

  • Open Access

    ARTICLE

    Enhancing the Classification Accuracy in Sentiment Analysis with Computational Intelligence Using Joint Sentiment Topic Detection with MEDLDA

    PCD Kalaivaani1,*, Dr. R Thangarajan2

    Intelligent Automation & Soft Computing, Vol.26, No.1, pp. 71-79, 2020, DOI:10.31209/2019.100000152

    Abstract Web mining is the process of integrating the information from web by traditional data mining methodologies and techniques. Opinion mining is an application of natural language processing to extract subjective information from web. Online reviews require efficient classification algorithms for analysing the sentiments, which does not perform an in–depth analysis in current methods. Sentiment classification is done at document level in combination with topics and sentiments. It is based on weakly supervised Joint Sentiment-Topic mode which extends the topic model Maximum Entropy Discrimination Latent Dirichlet Allocation by constructing an additional sentiment layer. It is assumed More >

  • Open Access

    ARTICLE

    Sentiment Analysis Using Deep Learning Approach

    Peng Cen1, Kexin Zhang1, Desheng Zheng1, *

    Journal on Artificial Intelligence, Vol.2, No.1, pp. 17-27, 2020, DOI:10.32604/jai.2020.010132

    Abstract Deep learning has made a great breakthrough in the field of speech and image recognition. Mature deep learning neural network has completely changed the field of nat ural language processing (NLP). Due to the enormous amount of data and opinions being produced, shared and transferred everyday across the Internet and other media, sentiment analysis has become one of the most active research fields in natural language processing. This paper introduces three deep learning networks applied in IMDB movie reviews sent iment analysis. Dataset was divided to 50% positive reviews and 50% negative reviews. Recurrent Neural More >

  • Open Access

    ARTICLE

    Modeling Multi-Targets Sentiment Classification via Graph Convolutional Networks and Auxiliary Relation

    Ao Feng1, Zhengjie Gao1, *, Xinyu Song1, Ke Ke2, Tianhao Xu1, Xuelei Zhang1

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 909-923, 2020, DOI:10.32604/cmc.2020.09913

    Abstract Existing solutions do not work well when multi-targets coexist in a sentence. The reason is that the existing solution is usually to separate multiple targets and process them separately. If the original sentence has N target, the original sentence will be repeated for N times, and only one target will be processed each time. To some extent, this approach degenerates the fine-grained sentiment classification task into the sentencelevel sentiment classification task, and the research method of processing the target separately ignores the internal relation and interaction between the targets. Based on the above considerations, we… More >

  • Open Access

    ARTICLE

    Fuzzy-Based Sentiment Analysis System for Analyzing Student Feedback and Satisfaction

    Yun Wang1, Fazli Subhan2, Shahaboddin Shamshirband3, 4, *, Muhammad Zubair Asghar5, Ikram Ullah5, Ammara Habib5

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 631-655, 2020, DOI:10.32604/cmc.2020.07920

    Abstract The feedback collection and analysis has remained an important subject matter for long. The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis. However, the student expresses their feedback opinions on online social media sites, which need to be analyzed. This study aims at the development of fuzzy-based sentiment analysis system for analyzing student feedback and satisfaction by assigning proper sentiment score to opinion words and polarity shifters present in the input reviews. Our technique computes the sentiment score of student feedback reviews and then applies a fuzzy-logic module to More >

Displaying 111-120 on page 12 of 124. Per Page