Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Shear Stress and Oxidized LDL Regulates Endothelial Cell Tube Formation through VEGF Signaling

    Bo Ling1,#, Daoxi Lei1,#, Juhui Qiu1, Kang Zhang1, Hao Chen2,*, Yeqi Wang1, Zhiyi Ye1, Guixue Wang*

    Molecular & Cellular Biomechanics, Vol.14, No.4, pp. 197-211, 2017, DOI:10.3970/mcb.2017.014.197

    Abstract Shear stress and oxidized low-density lipoprotein (oxLDL) caused by abnormal blood is critical to angiogenesis for atherosclerosis. However, the mechanism in shear stress or ox-LDL regulated angiogenesis is still not well understood. There is the hypothesis that shear stress or oxLDL regulates angiogenesis through the vascular endothelial growth factor (VEGF) signaling pathway. It is discovered that both high shear stress and low concentration of oxLDL contribute to angiogenesis, which is inhibited once the VEGF or VEGFR expression is knocked down. The expression of p-FAK and p-paxillin is regulated by the VEGF/VEGFR signal axis. VEGFR2, p-FAK, p-paxillin and VEGFR1 are VEGF-responsive… More >

Displaying 1-10 on page 1 of 1. Per Page