Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    CLF-YOLOv8: Lightweight Multi-Scale Fusion with Focal Geometric Loss for Real-Time Night Maritime Detection

    Zhonghao Wang1,2, Xin Liu1,2,*, Changhua Yue3, Haiwen Yuan4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071813 - 09 December 2025

    Abstract To address critical challenges in nighttime ship detection—high small-target missed detection (over 20%), insufficient lightweighting, and limited generalization due to scarce, low-quality datasets—this study proposes a systematic solution. First, a high-quality Night-Ships dataset is constructed via CycleGAN-based day-night transfer, combined with a dual-threshold cleaning strategy (Laplacian variance sharpness filtering and brightness-color deviation screening). Second, a Cross-stage Lightweight Fusion-You Only Look Once version 8 (CLF-YOLOv8) is proposed with key improvements: the Neck network is reconstructed by replacing Cross Stage Partial (CSP) structure with the Cross Stage Partial Multi-Scale Convolutional Block (CSP-MSCB) and integrating Bidirectional Feature Pyramid More >

  • Open Access

    ARTICLE

    Marine Ship Detection Based on Twin Feature Pyramid Network and Spatial Attention

    Huagang Jin, Yu Zhou*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 751-768, 2025, DOI:10.32604/cmc.2025.067867 - 29 August 2025

    Abstract Recently, ship detection technology has been applied extensively in the marine security monitoring field. However, achieving accurate marine ship detection still poses significant challenges due to factors such as varying scales, slightly occluded objects, uneven illumination, and sea clutter. To address these issues, we propose a novel ship detection approach, i.e., the Twin Feature Pyramid Network and Data Augmentation (TFPN-DA), which mainly consists of three modules. First, to eliminate the negative effects of slightly occluded objects and uneven illumination, we propose the Spatial Attention within the Twin Feature Pyramid Network (SA-TFPN) method, which is based More >

  • Open Access

    ARTICLE

    OD-YOLOv8: A Lightweight and Enhanced New Algorithm for Ship Detection

    Zhuowei Wang1,*, Dezhi Han1, Bing Han2, Zhongdai Wu2

    Computer Systems Science and Engineering, Vol.49, pp. 377-399, 2025, DOI:10.32604/csse.2025.059634 - 09 April 2025

    Abstract Synthetic Aperture Radar (SAR) has become one of the most effective tools in ship detection. However, due to significant background interference, small targets, and challenges related to target scattering intensity in SAR images, current ship target detection faces serious issues of missed detections and false positives, and the network structures are overly complex. To address this issue, this paper proposes a lightweight model based on YOLOv8, named OD-YOLOv8. Firstly, we adopt a simplified neural network architecture, VanillaNet, to replace the backbone network, significantly reducing the number of parameters and computational complexity while ensuring accuracy. Secondly,… More >

  • Open Access

    ARTICLE

    SAR-LtYOLOv8: A Lightweight YOLOv8 Model for Small Object Detection in SAR Ship Images

    Conghao Niu1,*, Dezhi Han1, Bing Han2, Zhongdai Wu2

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1723-1748, 2024, DOI:10.32604/csse.2024.056736 - 22 November 2024

    Abstract The high coverage and all-weather capabilities of Synthetic Aperture Radar (SAR) image ship detection make it a widely accepted method for maritime ship positioning and identification. However, SAR ship detection faces challenges such as indistinct ship contours, low resolution, multi-scale features, noise, and complex background interference. This paper proposes a lightweight YOLOv8 model for small object detection in SAR ship images, incorporating key structures to enhance performance. The YOLOv8 backbone is replaced by the Slim Backbone (SB), and the Delete Medium-sized Detection Head (DMDH) structure is eliminated to concentrate on shallow features. Dynamically adjusting the… More >

  • Open Access

    ARTICLE

    EfficientShip: A Hybrid Deep Learning Framework for Ship Detection in the River

    Huafeng Chen1, Junxing Xue2, Hanyun Wen2, Yurong Hu1, Yudong Zhang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 301-320, 2024, DOI:10.32604/cmes.2023.028738 - 22 September 2023

    Abstract Optical image-based ship detection can ensure the safety of ships and promote the orderly management of ships in offshore waters. Current deep learning researches on optical image-based ship detection mainly focus on improving one-stage detectors for real-time ship detection but sacrifices the accuracy of detection. To solve this problem, we present a hybrid ship detection framework which is named EfficientShip in this paper. The core parts of the EfficientShip are DLA-backboned object location (DBOL) and CascadeRCNN-guided object classification (CROC). The DBOL is responsible for finding potential ship objects, and the CROC is used to categorize More >

  • Open Access

    ARTICLE

    Swin-PAFF: A SAR Ship Detection Network with Contextual Cross-Information Fusion

    Yujun Zhang*, Dezhi Han, Peng Chen

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2657-2675, 2023, DOI:10.32604/cmc.2023.042311 - 29 November 2023

    Abstract Synthetic Aperture Radar (SAR) image target detection has widespread applications in both military and civil domains. However, SAR images pose challenges due to strong scattering, indistinct edge contours, multi-scale representation, sparsity, and severe background interference, which make the existing target detection methods in low accuracy. To address this issue, this paper proposes a multi-scale fusion framework (Swin-PAFF) for SAR target detection that utilizes the global context perception capability of the Transformer and the multi-layer feature fusion learning ability of the feature pyramid structure (FPN). Firstly, to tackle the issue of inadequate perceptual image context information… More >

  • Open Access

    ARTICLE

    Ship Detection and Recognition Based on Improved YOLOv7

    Wei Wu1, Xiulai Li2, Zhuhua Hu1, Xiaozhang Liu3,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 489-498, 2023, DOI:10.32604/cmc.2023.039929 - 08 June 2023

    Abstract In this paper, an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks, such as the irregular shapes and varying sizes of ships. The improved model replaces the fixed anchor boxes utilized in conventional YOLOv7 models with a set of more suitable anchor boxes specifically designed based on the size distribution of ships in the dataset. This paper also introduces a novel multi-scale feature fusion module, which comprises Path Aggregation Network (PAN) modules, enabling the efficient capture of ship features across different scales. Furthermore, data preprocessing is enhanced More >

  • Open Access

    ARTICLE

    Deep Neural Network Based Detection and Segmentation of Ships for Maritime Surveillance

    Kyamelia Roy1, Sheli Sinha Chaudhuri1, Sayan Pramanik2, Soumen Banerjee2,*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 647-662, 2023, DOI:10.32604/csse.2023.024997 - 01 June 2022

    Abstract In recent years, computer vision finds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture. Automatic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies. Waterways being an important medium of transport require continuous monitoring for protection of national security. The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea. This paper proposes a deep learning… More >

  • Open Access

    ARTICLE

    Visual Relationship Detection with Contextual Information

    Yugang Li1, 2, *, Yongbin Wang1, Zhe Chen2, Yuting Zhu3

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1575-1589, 2020, DOI:10.32604/cmc.2020.07451 - 30 April 2020

    Abstract Understanding an image goes beyond recognizing and locating the objects in it, the relationships between objects also very important in image understanding. Most previous methods have focused on recognizing local predictions of the relationships. But real-world image relationships often determined by the surrounding objects and other contextual information. In this work, we employ this insight to propose a novel framework to deal with the problem of visual relationship detection. The core of the framework is a relationship inference network, which is a recurrent structure designed for combining the global contextual information of the object to More >

Displaying 1-10 on page 1 of 9. Per Page