Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Enhanced Cuckoo Search Optimization Technique for Skin Cancer Diagnosis Application

    S. Ayshwarya Lakshmi1,*, K. Anandavelu2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3403-3413, 2023, DOI:10.32604/iasc.2023.030970 - 17 August 2022

    Abstract Skin cancer segmentation is a critical task in a clinical decision support system for skin cancer detection. The suggested enhanced cuckoo search based optimization model will be used to evaluate several metrics in the skin cancer picture segmentation process. Because time and resources are always limited, the proposed enhanced cuckoo search optimization algorithm is one of the most effective strategies for dealing with global optimization difficulties. One of the most significant requirements is to design optimal solutions to optimize their use. There is no particular technique that can answer all optimization issues. The proposed enhanced… More >

  • Open Access

    ARTICLE

    Hybrid Color Texture Features Classification Through ANN for Melanoma

    Saleem Mustafa1, Arfan Jaffar1, Muhammad Waseem Iqbal2,*, Asma Abubakar2, Abdullah S. Alshahrani3, Ahmed Alghamdi4

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2205-2218, 2023, DOI:10.32604/iasc.2023.029549 - 19 July 2022

    Abstract Melanoma is of the lethal and rare types of skin cancer. It is curable at an initial stage and the patient can survive easily. It is very difficult to screen all skin lesion patients due to costly treatment. Clinicians are requiring a correct method for the right treatment for dermoscopic clinical features such as lesion borders, pigment networks, and the color of melanoma. These challenges are required an automated system to classify the clinical features of melanoma and non-melanoma disease. The trained clinicians can overcome the issues such as low contrast, lesions varying in size,… More >

  • Open Access

    ARTICLE

    MIoT Based Skin Cancer Detection Using Bregman Recurrent Deep Learning

    Nithya Rekha Sivakumar1,*, Sara Abdelwahab Ghorashi1, Faten Khalid Karim1, Eatedal Alabdulkreem1, Amal Al-Rasheed2

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6253-6267, 2022, DOI:10.32604/cmc.2022.029266 - 28 July 2022

    Abstract Mobile clouds are the most common medium for aggregating, storing, and analyzing data from the medical Internet of Things (MIoT). It is employed to monitor a patient’s essential health signs for earlier disease diagnosis and prediction. Among the various disease, skin cancer was the wide variety of cancer, as well as enhances the endurance rate. In recent years, many skin cancer classification systems using machine and deep learning models have been developed for classifying skin tumors, including malignant melanoma (MM) and other skin cancers. However, accurate cancer detection was not performed with minimum time consumption.… More >

  • Open Access

    ARTICLE

    An Enhanced Deep Learning Method for Skin Cancer Detection and Classification

    Mohamed W. Abo El-Soud1,2,*, Tarek Gaber2,3, Mohamed Tahoun2, Abdullah Alourani1

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1109-1123, 2022, DOI:10.32604/cmc.2022.028561 - 18 May 2022

    Abstract The prevalence of melanoma skin cancer has increased in recent decades. The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins. Thus, the early diagnosis of melanoma is a key factor in improving the prognosis of the disease. Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images. Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases. This paper proposes a new method… More >

  • Open Access

    ARTICLE

    Hybridization of CNN with LBP for Classification of Melanoma Images

    Saeed Iqbal1,*, Adnan N. Qureshi1, Ghulam Mustafa2

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4915-4939, 2022, DOI:10.32604/cmc.2022.023178 - 14 January 2022

    Abstract Skin cancer (melanoma) is one of the most aggressive of the cancers and the prevalence has significantly increased due to increased exposure to ultraviolet radiation. Therefore, timely detection and management of the lesion is a critical consideration in order to improve lifestyle and reduce mortality. To this end, we have designed, implemented and analyzed a hybrid approach entailing convolutional neural networks (CNN) and local binary patterns (LBP). The experiments have been performed on publicly accessible datasets ISIC 2017, 2018 and 2019 (HAM10000) with data augmentation for in-distribution generalization. As a novel contribution, the CNN architecture More >

  • Open Access

    ARTICLE

    Skin Lesion Segmentation and Classification Using Conventional and Deep Learning Based Framework

    Amina Bibi1, Muhamamd Attique Khan1, Muhammad Younus Javed1, Usman Tariq2, Byeong-Gwon Kang3, Yunyoung Nam3,*, Reham R. Mostafa4, Rasha H. Sakr5

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2477-2495, 2022, DOI:10.32604/cmc.2022.018917 - 07 December 2021

    Abstract Background: In medical image analysis, the diagnosis of skin lesions remains a challenging task. Skin lesion is a common type of skin cancer that exists worldwide. Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer. Challenges: Many computerized methods have been introduced in the literature to classify skin cancers. However, challenges remain such as imbalanced datasets, low contrast lesions, and the extraction of irrelevant or redundant features. Proposed Work: In this study, a new technique is proposed based on the conventional and deep learning framework. The proposed framework consists of… More >

  • Open Access

    ARTICLE

    Intelligent Multiclass Skin Cancer Detection Using Convolution Neural Networks

    Reham Alabduljabbar*, Hala Alshamlan

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 831-847, 2021, DOI:10.32604/cmc.2021.018402 - 04 June 2021

    Abstract The worldwide mortality rate due to cancer is second only to cardiovascular diseases. The discovery of image processing, latest artificial intelligence techniques, and upcoming algorithms can be used to effectively diagnose and prognose cancer faster and reduce the mortality rate. Efficiently applying these latest techniques has increased the survival chances during recent years. The research community is making significant continuous progress in developing automated tools to assist dermatologists in decision making. The datasets used for the experimentation and analysis are ISBI 2016, ISBI 2017, and HAM 10000. In this work pertained models are used to… More >

  • Open Access

    ARTICLE

    Computer Decision Support System for Skin Cancer Localization and Classification

    Muhammad Attique Khan1, Tallha Akram2, Muhammad Sharif1, Seifedine Kadry3, Yunyoung Nam4,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1041-1064, 2021, DOI:10.32604/cmc.2021.016307 - 22 March 2021

    Abstract In this work, we propose a new, fully automated system for multiclass skin lesion localization and classification using deep learning. The main challenge is to address the problem of imbalanced data classes, found in HAM10000, ISBI2018, and ISBI2019 datasets. Initially, we consider a pre-trained deep neural network model, DarkeNet19, and fine-tune the parameters of third convolutional layer to generate the image gradients. All the visualized images are fused using a High-Frequency approach along with Multilayered Feed-Forward Neural Network (HFaFFNN). The resultant image is further enhanced by employing a log-opening based activation function to generate a… More >

  • Open Access

    ARTICLE

    Diagnosis of Various Skin Cancer Lesions Based on Fine-Tuned ResNet50 Deep Network

    Sameh Abd ElGhany1,2, Mai Ramadan Ibraheem3, Madallah Alruwaili4, Mohammed Elmogy5,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 117-135, 2021, DOI:10.32604/cmc.2021.016102 - 22 March 2021

    Abstract With the massive success of deep networks, there have been significant efforts to analyze cancer diseases, especially skin cancer. For this purpose, this work investigates the capability of deep networks in diagnosing a variety of dermoscopic lesion images. This paper aims to develop and fine-tune a deep learning architecture to diagnose different skin cancer grades based on dermatoscopic images. Fine-tuning is a powerful method to obtain enhanced classification results by the customized pre-trained network. Regularization, batch normalization, and hyperparameter optimization are performed for fine-tuning the proposed deep network. The proposed fine-tuned ResNet50 model successfully classified More >

  • Open Access

    ARTICLE

    Skin Melanoma Classification System Using Deep Learning

    R. Thamizhamuthu*, D. Manjula

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1147-1160, 2021, DOI:10.32604/cmc.2021.015503 - 22 March 2021

    Abstract The deadliest type of skin cancer is malignant melanoma. The diagnosis requires at the earliest to reduce the mortality rate. In this study, an efficient Skin Melanoma Classification (SMC) system is presented using dermoscopic images as a non-invasive procedure. The SMC system consists of four modules; segmentation, feature extraction, feature reduction and finally classification. In the first module, k-means clustering is applied to cluster the colour information of dermoscopic images. The second module extracts meaningful and useful descriptors based on the statistics of local property, parameters of Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model of wavelet… More >

Displaying 11-20 on page 2 of 21. Per Page