Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Enhanced Cutaneous Melanoma Segmentation in Dermoscopic Images Using a Dual U-Net Framework with Multi-Path Convolution Block Attention Module and SE-Res-Conv

    Kun Lan1, Feiyang Gao1, Xiaoliang Jiang1,*, Jianzhen Cheng2,*, Simon Fong3

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4805-4824, 2025, DOI:10.32604/cmc.2025.065864 - 30 July 2025

    Abstract With the continuous development of artificial intelligence and machine learning techniques, there have been effective methods supporting the work of dermatologist in the field of skin cancer detection. However, object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations, such as bubbles and scales. To address these challenges, we propose a dual U-Net network framework for skin melanoma segmentation. In our proposed architecture, we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net. First, we establish… More >

  • Open Access

    ARTICLE

    Faster Region Based Convolutional Neural Network for Skin Lesion Segmentation

    G. Murugesan1,*, J. Jeyapriya2, M. Hemalatha3, S. Rajeshkannan4

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2099-2109, 2023, DOI:10.32604/iasc.2023.032068 - 05 January 2023

    Abstract The diagnostic interpretation of dermoscopic images is a complex task as it is very difficult to identify the skin lesions from the normal. Thus the accurate detection of potential abnormalities is required for patient monitoring and effective treatment. In this work, a Two-Tier Segmentation (TTS) system is designed, which combines the unsupervised and supervised techniques for skin lesion segmentation. It comprises preprocessing by the median filter, TTS by Colour K-Means Clustering (CKMC) for initial segmentation and Faster Region based Convolutional Neural Network (FR-CNN) for refined segmentation. The CKMC approach is evaluated using the different number of… More >

  • Open Access

    ARTICLE

    A Convolutional Neural Network for Skin Lesion Segmentation Using Double U-Net Architecture

    Iqra Abid1, Sultan Almakdi2, Hameedur Rahman3, Ahmed Almulihi4, Ali Alqahtani2, Khairan Rajab2,5, Abdulmajeed Alqhatani2,*, Asadullah Shaikh2

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1407-1421, 2022, DOI:10.32604/iasc.2022.023753 - 24 March 2022

    Abstract Skin lesion segmentation plays a critical role in the precise and early detection of skin cancer via recent frameworks. The prerequisite for any computer-aided skin cancer diagnosis system is the accurate segmentation of skin malignancy. To achieve this, a specialized skin image analysis technique must be used for the separation of cancerous parts from important healthy skin. This procedure is called Dermatography. Researchers have often used multiple techniques for the analysis of skin images, but, because of their low accuracy, most of these methods have turned out to be at best, inconsistent. Proper clinical treatment… More >

  • Open Access

    ARTICLE

    Skin Lesion Segmentation and Classification Using Conventional and Deep Learning Based Framework

    Amina Bibi1, Muhamamd Attique Khan1, Muhammad Younus Javed1, Usman Tariq2, Byeong-Gwon Kang3, Yunyoung Nam3,*, Reham R. Mostafa4, Rasha H. Sakr5

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2477-2495, 2022, DOI:10.32604/cmc.2022.018917 - 07 December 2021

    Abstract Background: In medical image analysis, the diagnosis of skin lesions remains a challenging task. Skin lesion is a common type of skin cancer that exists worldwide. Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer. Challenges: Many computerized methods have been introduced in the literature to classify skin cancers. However, challenges remain such as imbalanced datasets, low contrast lesions, and the extraction of irrelevant or redundant features. Proposed Work: In this study, a new technique is proposed based on the conventional and deep learning framework. The proposed framework consists of… More >

  • Open Access

    ARTICLE

    A Saliency Based Image Fusion Framework for Skin Lesion Segmentation and Classification

    Javaria Tahir1, Syed Rameez Naqvi2,*, Khursheed Aurangzeb3, Musaed Alhussein3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3235-3250, 2022, DOI:10.32604/cmc.2022.018949 - 27 September 2021

    Abstract Melanoma, due to its higher mortality rate, is considered as one of the most pernicious types of skin cancers, mostly affecting the white populations. It has been reported a number of times and is now widely accepted, that early detection of melanoma increases the chances of the subject’s survival. Computer-aided diagnostic systems help the experts in diagnosing the skin lesion at earlier stages using machine learning techniques. In this work, we propose a framework that accurately segments, and later classifies, the lesion using improved image segmentation and fusion methods. The proposed technique takes an image More >

Displaying 1-10 on page 1 of 5. Per Page