Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    An Incentive Mechanism Model for Crowdsensing with Distributed Storage in Smart Cities

    Jiaxing Wang, Lanlan Rui, Yang Yang*, Zhipeng Gao, Xuesong Qiu

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2355-2384, 2023, DOI:10.32604/cmc.2023.034993 - 30 August 2023

    Abstract Crowdsensing, as a data collection method that uses the mobile sensing ability of many users to help the public collect and extract useful information, has received extensive attention in data collection. Since crowdsensing relies on user equipment to consume resources to obtain information, and the quality and distribution of user equipment are uneven, crowdsensing has problems such as low participation enthusiasm of participants and low quality of collected data, which affects the widespread use of crowdsensing. This paper proposes to apply the blockchain to crowdsensing and solve the above challenges by utilizing the characteristics of… More >

  • Open Access

    ARTICLE

    A Trailblazing Framework of Security Assessment for Traffic Data Management

    Abdulaziz Attaallah1, Khalil al-Sulbi2, Areej Alasiry3, Mehrez Marzougui3, Neha Yadav4, Syed Anas Ansar5,*, Pawan Kumar Chaurasia4, Alka Agrawal4

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1853-1875, 2023, DOI:10.32604/iasc.2023.039761 - 21 June 2023

    Abstract Connected and autonomous vehicles are seeing their dawn at this moment. They provide numerous benefits to vehicle owners, manufacturers, vehicle service providers, insurance companies, etc. These vehicles generate a large amount of data, which makes privacy and security a major challenge to their success. The complicated machine-led mechanics of connected and autonomous vehicles increase the risks of privacy invasion and cyber security violations for their users by making them more susceptible to data exploitation and vulnerable to cyber-attacks than any of their predecessors. This could have a negative impact on how well-liked CAVs are with… More >

  • Open Access

    ARTICLE

    Physics-Informed AI Surrogates for Day-Ahead Wind Power Probabilistic Forecasting with Incomplete Data for Smart Grid in Smart Cities

    Zeyu Wu1, Bo Sun1,2, Qiang Feng2,*, Zili Wang1, Junlin Pan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 527-554, 2023, DOI:10.32604/cmes.2023.027124 - 23 April 2023

    Abstract Due to the high inherent uncertainty of renewable energy, probabilistic day-ahead wind power forecasting is crucial for modeling and controlling the uncertainty of renewable energy smart grids in smart cities. However, the accuracy and reliability of high-resolution day-ahead wind power forecasting are constrained by unreliable local weather prediction and incomplete power generation data. This article proposes a physics-informed artificial intelligence (AI) surrogates method to augment the incomplete dataset and quantify its uncertainty to improve wind power forecasting performance. The incomplete dataset, built with numerical weather prediction data, historical wind power generation, and weather factors data,… More > Graphic Abstract

    Physics-Informed AI Surrogates for Day-Ahead Wind Power Probabilistic Forecasting with Incomplete Data for Smart Grid in Smart Cities

  • Open Access

    ARTICLE

    Parameter Tuned Deep Learning Based Traffic Critical Prediction Model on Remote Sensing Imaging

    Sarkar Hasan Ahmed1, Adel Al-Zebari2, Rizgar R. Zebari3, Subhi R. M. Zeebaree4,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3993-4008, 2023, DOI:10.32604/cmc.2023.037464 - 31 March 2023

    Abstract Remote sensing (RS) presents laser scanning measurements, aerial photos, and high-resolution satellite images, which are utilized for extracting a range of traffic-related and road-related features. RS has a weakness, such as traffic fluctuations on small time scales that could distort the accuracy of predicted road and traffic features. This article introduces an Optimal Deep Learning for Traffic Critical Prediction Model on High-Resolution Remote Sensing Images (ODLTCP-HRRSI) to resolve these issues. The presented ODLTCP-HRRSI technique majorly aims to forecast the critical traffic in smart cities. To attain this, the presented ODLTCP-HRRSI model performs two major processes. More >

  • Open Access

    ARTICLE

    Deep Consensus Network for Recycling Waste Detection in Smart Cities

    Manar Ahmed Hamza1,*, Hanan Abdullah Mengash2, Noha Negm3, Radwa Marzouk2, Abdelwahed Motwakel1, Abu Sarwar Zamani1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4191-4205, 2023, DOI:10.32604/cmc.2023.027050 - 31 March 2023

    Abstract Recently, urbanization becomes a major concern for developing as well as developed countries. Owing to the increased urbanization, one of the important challenging issues in smart cities is waste management. So, automated waste detection and classification model becomes necessary for the smart city and to accomplish better recyclable waste management. Effective recycling of waste offers the chance of reducing the quantity of waste disposed to the land fill by minimizing the requirement of collecting raw materials. This study develops a novel Deep Consensus Network with Whale Optimization Algorithm for Recycling Waste Object Detection (DCNWO-RWOD) in… More >

  • Open Access

    ARTICLE

    Multi-Layer Fog-Cloud Architecture for Optimizing the Placement of IoT Applications in Smart Cities

    Mohammad Aldossary*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 633-649, 2023, DOI:10.32604/cmc.2023.035414 - 06 February 2023

    Abstract In the smart city paradigm, the deployment of Internet of Things (IoT) services and solutions requires extensive communication and computing resources to place and process IoT applications in real time, which consumes a lot of energy and increases operational costs. Usually, IoT applications are placed in the cloud to provide high-quality services and scalable resources. However, the existing cloud-based approach should consider the above constraints to efficiently place and process IoT applications. In this paper, an efficient optimization approach for placing IoT applications in a multi-layer fog-cloud environment is proposed using a mathematical model (Mixed-Integer… More >

  • Open Access

    ARTICLE

    Deep Learning Method to Detect the Road Cracks and Potholes for Smart Cities

    Hong-Hu Chu1, Muhammad Rizwan Saeed2, Javed Rashid3,4,*, Muhammad Tahir Mehmood5, Israr Ahmad6, Rao Sohail Iqbal4, Ghulam Ali1

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1863-1881, 2023, DOI:10.32604/cmc.2023.035287 - 06 February 2023

    Abstract The increasing global population at a rapid pace makes road traffic dense; managing such massive traffic is challenging. In developing countries like Pakistan, road traffic accidents (RTA) have the highest mortality percentage among other Asian countries. The main reasons for RTAs are road cracks and potholes. Understanding the need for an automated system for the detection of cracks and potholes, this study proposes a decision support system (DSS) for an autonomous road information system for smart city development with the use of deep learning. The proposed DSS works in layers where initially the image of… More >

  • Open Access

    ARTICLE

    Efficient Network Selection Using Multi-Depot Routing Problem for Smart Cities

    R. Shanthakumari1, Yun-Cheol Nam2, Yunyoung Nam3,*, Mohamed Abouhawwash4,5

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1991-2005, 2023, DOI:10.32604/iasc.2023.033696 - 05 January 2023

    Abstract Smart cities make use of a variety of smart technology to improve societies in better ways. Such intelligent technologies, on the other hand, pose significant concerns in terms of power usage and emission of carbons. The suggested study is focused on technological networks for big data-driven systems. With the support of software-defined technologies, a transportation-aided multicast routing system is suggested. By using public transportation as another communication platform in a smart city, network communication is enhanced. The primary objective is to use as little energy as possible while delivering as much data as possible. The… More >

  • Open Access

    ARTICLE

    An Optimized Offloaded Task Execution for Smart Cities Applications

    Ahmad Naseem Alvi1, Muhammad Awais Javed1,*, Mozaherul Hoque Abul Hasanat2, Muhammad Badruddin Khan2, Abdul Khader Jilani Saudagar2, Mohammed Alkhathami2

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6321-6334, 2023, DOI:10.32604/cmc.2023.029913 - 28 December 2022

    Abstract Wireless nodes are one of the main components in different applications that are offered in a smart city. These wireless nodes are responsible to execute multiple tasks with different priority levels. As the wireless nodes have limited processing capacity, they offload their tasks to cloud servers if the number of tasks exceeds their task processing capacity. Executing these tasks from remotely placed cloud servers causes a significant delay which is not required in sensitive task applications. This execution delay is reduced by placing fog computing nodes near these application nodes. A fog node has limited… More >

  • Open Access

    ARTICLE

    Deep Learning Enabled Intelligent Healthcare Management System in Smart Cities Environment

    Hanan Abdullah Mengash1, Lubna A. Alharbi2, Saud S. Alotaibi3, Sarab AlMuhaideb4, Nadhem Nemri5, Mrim M. Alnfiai6, Radwa Marzouk1, Ahmed S. Salama7, Mesfer Al Duhayyim8,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4483-4500, 2023, DOI:10.32604/cmc.2023.032588 - 31 October 2022

    Abstract In recent times, cities are getting smart and can be managed effectively through diverse architectures and services. Smart cities have the ability to support smart medical systems that can infiltrate distinct events (i.e., smart hospitals, smart homes, and community health centres) and scenarios (e.g., rehabilitation, abnormal behavior monitoring, clinical decision-making, disease prevention and diagnosis postmarking surveillance and prescription recommendation). The integration of Artificial Intelligence (AI) with recent technologies, for instance medical screening gadgets, are significant enough to deliver maximum performance and improved management services to handle chronic diseases. With latest developments in digital data collection,… More >

Displaying 11-20 on page 2 of 46. Per Page