Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Effectively Inhibit Phase Separation to Improve Efficiency and Stability of All-Inorganic Planar CsPbIBr2 Perovskite Solar Cells

    Miao He*, Miao Wu#, Duofa Wang, Tianjin Zhang*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2883-2894, 2022, DOI:10.32604/jrm.2022.020535

    Abstract The advancement in a power conversion efficiency (PCE) to reach 25%, the inorganic perovskites are being explored intensively as promising optoelectronic materials due to their excellent photovoltaic performance, i.e., thermal stability and efficiency. Lately, the inorganic cesium lead halide perovskite is studied to show enhanced light absorption, however, it suffers from the phase separate into I-rich and Br-rich phase which leads to poor film quality due to difference of electronegativity. Herein, we propose a unique solution of controlling the rate of solvent volatilization followed by gel method to inhibit phase separation effectively to obtain the homogenous and pinhole-free CsPbIBr2 films… More >

  • Open Access

    ARTICLE

    A Solvation Model for Performance Enhancement of Dye-Sensitized Solar Cells

    Adel Daoud1,2,3,4,*, Ali Cheknane2, Jean Michel Nunzi3,4, Afak Meftah1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1569-1579, 2022, DOI:10.32604/fdmp.2022.022091

    Abstract A solubility model for Merocyanine-540 dye together with the interface's electron transfer kinetics of MC-540/TiO2 has been investigated (Merocyanine 540-based dye has been used effectively in dye-sensitized solar cells). The highest absorption peaks were recorded at 489 nm and 493 nm in Water and Ethanol solvent, versus the vacuum phase which yielded 495 nm (associated with a modest electron injection-free energy value (ΔGinj) of -2.34 eV for both Water and Ethanol solvents). The time-dependent density functional theory (TD-DFT) method approach has been applied in this simulation. Additionally, the electronic structure and simulated UV-Vis spectra of the dye in different solvents… More > Graphic Abstract

    A Solvation Model for Performance Enhancement of Dye-Sensitized Solar Cells

  • Open Access

    ARTICLE

    Sputtering under Mild Heating Enables High-Quality ITO for Efficient Semi-Transparent Perovskite Solar Cells

    Yongbin Jin1,#, Zheng Fang1,2,#, Liu Yang1, Kaikai Liu1, Mingliang Li1, Yaping Zhao1, Yujie Luo1, Huiping Feng1, Bingru Deng1, Chengbo Tian1, Changcai Cui2, Liqiang Xie1,*, Xipeng Xu2,*, Zhanhua Wei1

    Journal of Renewable Materials, Vol.10, No.10, pp. 2509-2518, 2022, DOI:10.32604/jrm.2022.021400

    Abstract Semi-transparent perovskite solar cells (ST-PSCs) are promising in building-integrated photovoltaics (BIPVs) and tandem solar cells (TSCs). One of the keys to fabricate high-performance ST-PSCs is depositing efficient transparent electrodes. Indium tin oxide (ITO) is an excellent transparent conductive oxide with good light transmittance and high conductivity. However, the high sheet resistance of ITO sputtered at room temperature leads to the low fill factor (FF) and poor power conversion efficiency (PCE) of the ST-PSCs. Here, we study the effect of the sputtering temperature on the properties of ITO and the performance of ST-PSCs. We find that when the sputtering temperature increases… More > Graphic Abstract

    Sputtering under Mild Heating Enables High-Quality ITO for Efficient Semi-Transparent Perovskite Solar Cells

  • Open Access

    ARTICLE

    DFT and TD-DFT Calculations of Orbital Energies and Photovoltaic Properties of Small Molecule Donor and Acceptor Materials Used in Organic Solar Cells

    Daniel Dodzi Yao Setsoafia1, Kiran Sreedhar Ram1, Hooman Mehdizadeh-Rad1,2, David Ompong1,2, Vinuthaa Murthy1,2, Jai Singh1,2,*

    Journal of Renewable Materials, Vol.10, No.10, pp. 2553-2567, 2022, DOI:10.32604/jrm.2022.020967

    Abstract DFT and TD-DFT calculations of HOMO and LUMO energies and photovoltaic properties are carried out on four selected pentathiophene donor and one IDIC-4F acceptor molecules using B3LYP and PBE0 functionals for the ground state energy calculations and CAM-B3LYP functional for the excited state calculations. The discrepancy between the calculated and experimental energies is reduced by correlating them with a linear fit. The fitted energies of HOMO and LUMO are used to calculate the Voc of an OSC based on these donors and acceptor blend and compared with experimental values. Using the Scharber model the calculated PCE of the donor-acceptor molecules… More >

  • Open Access

    ARTICLE

    Monolayer MoS2/n-Si Heterostructure Schottky Solar Cell

    Omar Salih Omar*

    Journal of Renewable Materials, Vol.10, No.7, pp. 1979-1988, 2022, DOI:10.32604/jrm.2022.018765

    Abstract Monolayer MoS2 has a promising optoelectronics property, with a bandgap in the visible range; the material is a potential candidate for solar cell applications. In this work, we grew MoS2 monolayers using a low-pressure chemical vapor deposition approach. To produce uniform wafer-scale MoS2 monolayer films, precursors molybdenum dioxide (MoO2) and sulfur (S) are utilized. Atomic force microscopy was used to quantify the thickness of the monolayers, and the result was validated by Raman spectroscopy. Transmission electron microscopy (TEM) was used to confirm the crystalline quality of the monolayers, and photoluminescence spectroscopy was used to evaluate their optical properties. We were… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Algorithm for Multi-Type Defects Detection in Solar Cells with Aerial EL Images for Photovoltaic Plants

    Wuqin Tang, Qiang Yang, Wenjun Yan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1423-1439, 2022, DOI:10.32604/cmes.2022.018313

    Abstract Defects detection with Electroluminescence (EL) image for photovoltaic (PV) module has become a standard test procedure during the process of production, installation, and operation of solar modules. There are some typical defects types, such as crack, finger interruption, that can be recognized with high accuracy. However, due to the complexity of EL images and the limitation of the dataset, it is hard to label all types of defects during the inspection process. The unknown or unlabeled create significant difficulties in the practical application of the automatic defects detection technique. To address the problem, we proposed an evolutionary algorithm combined with… More >

  • Open Access

    REVIEW

    Advancements in the Development of Various Types of Dye-Sensitized Solar Cells: A Comparative Review

    Sandhia Bai1, A. K. Amirruddin1, A. K. Pandey2,*, M. Samykano1,*, Muhammad Shakeel Ahmad3, Kamal Sharma4, V. V. Tyagi5

    Energy Engineering, Vol.118, No.4, pp. 737-759, 2021, DOI:10.32604/EE.2021.016157

    Abstract The global increase in energy demand has resulted in the depletion of non-renewable resources and caused environmental degradation. Consequently, emerging renewable technologies are a potential solution to fulfil energy demand and mitigate the effect of global warming. Low-cost solar energy harvesting technologies are most feasible technologies. Various solar cells technologies have been developed with improved overall performance and conversion efficiency. However, due to low cost and a wide range of applications, dye-sensitized solar cells (DSSCs) have been immensely focused on one of the most promising third-generation solar cells. The highest conversion efficiency of DSSC achieved after three decades of research… More >

  • Open Access

    ARTICLE

    Improved Teaching Learning Based Optimization and Its Application in Parameter Estimation of Solar Cell Models

    Qinqin Fan1,*, Yilian Zhang2, Zhihuan Wang1

    Intelligent Automation & Soft Computing, Vol.26, No.1, pp. 1-12, 2020, DOI:10.31209/2018.100000042

    Abstract Weak global exploration capability is one of the primary drawbacks in teaching learning based optimization (TLBO). To enhance the search capability of TLBO, an improved TLBO (ITLBO) is introduced in this study. In ITLBO, a uniform random number is replaced by a normal random number, and a weighted average position of the current population is chosen as the other teacher. The performance of ITLBO is compared with that of five meta-heuristic algorithms on a well-known test suite. Results demonstrate that the average performance of ITLBO is superior to that of the compared algorithms. Finally, ITLBO is employed to estimate parameters… More >

  • Open Access

    ARTICLE

    Sunflower-Like SrCo2S4@f-MWCNTs Hybrid Wrapped by Engineering N-Reduced Graphene Oxide for High Performance Dye-Sensitized Solar Cells

    Weiming Zhang1, Muhammad Wasim Khan1, Xueqin Zuo1, Qun Yang1, Huaibao Tang1,2, Shaowei Jin1,2, Guang Li1,2,3,*

    Journal of Renewable Materials, Vol.8, No.4, pp. 431-446, 2020, DOI:10.32604/jrm.2020.09158

    Abstract A novel sunflower-like nanocomposite of SrCo2S4 nanoflakes and functionalized multiwall carbon nanotubes (f-MWCNTs) entanglement enveloped in nitrogen-reduced graphene oxide (N-RGO) is prepared by a cheap process. The unique entanglement structure of the material exhibits higher specific surface area, better electrical conductivity and other properties. This helps to reduce the transfer resistance in the photoelectric process of the battery and improve the electrochemical activity, thus increasing the photoelectric conversion efficiency of the battery. The new ternary cobalt-based sulfide material can replace platinum as the counter electrode (CE) material loaded on dye-sensitized solar cells (DSSCs). DSSCs with SrCo2S4@f-MWCNTs@N-RGO (SCS@f-M@N-R) as CE material… More >

  • Open Access

    ARTICLE

    The Influence of Annealing in Nitrogen Atmosphere on the Electrical, Optical and Structural Properties of Spray-Deposited ZnO Thin Films

    Shadia J Ikhmayies1, Naseem M. Abu El-Haija2, Riyad N. Ahmad-Bitar3

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.2, pp. 219-232, 2010, DOI:10.3970/fdmp.2010.006.219

    Abstract Large area and highly uniform polycrystalline ZnO thin films have been produced by a spray pyrolysis (SP) technique resorting to a customized system (spraying) on glass substrates at temperature Ts= 450℃. This study deals with the related investigation about the influence of heat treatment (in nitrogen atmosphere) on the resulting properties (electrical, optical and structural) of such films. Properties are analyzed by means of I-V plots, transmittance curves, X-Ray diffractograms (XRD) and scanning electron microscope (SEM) micrographs. Results show that the resistivity of the films decreases from about 200W.cm for the as-deposited films to about 95W.cm for annealed films. XRD… More >

Displaying 11-20 on page 2 of 23. Per Page