Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access

    ARTICLE

    ZnSe Nanoparticles Reinforced Biopolymeric Soy Protein Isolate Film

    Rakesh Kumar1,*, Reshma Praveen1, Shikha Rani1, K. Sharma2, K. P. Tiwary3,*, K. Dinesh Kumar4

    Journal of Renewable Materials, Vol.7, No.8, pp. 749-761, 2019, DOI:10.32604/jrm.2019.06286

    Abstract ZnSe nanoparticles have been synthesized by microwave assisted method by using zinc chloride, selenium powder and ethylene diamine. The synthesized nanoparticles have been characterized structurally by FT-IR and XRD as well as morphological characterization was done by scanning electron microscope (SEM). The crystallite size after synthesis was obtained around 30 nm for pure ZnSe nanocrystallites. However, from SEM micrograph, agglomerated ZnSe nanoparticles of irregular shapes were observed. The as-synthesized ZnSe nanoparticles at different contents (1 to 5% w/w w.r.t SPI) were incorporated into soy protein isolate (SPI) to produce reinforced SPI films by solution casting method. The ZnSe nanoparticles incorporated… More >

  • Open Access

    ARTICLE

    Soy Protein Isolate Film by Incorporating Mandelic Acid as Well as Through Fermentation Mediated by Bacillus Subtilis

    Rakesh Kumar1,*, Priya Rani1, K. Dinesh Kumar2

    Journal of Renewable Materials, Vol.7, No.2, pp. 103-115, 2019, DOI:10.32604/jrm.2019.00027

    Abstract Soy protein isolate (SPI) biopolymeric films were prepared by adding different contents of mandelic acid (1 to 5% wrt SPI) to glycerol plasticized SPI by solution casting method. Also, SPI was fermented by Bacillus subtilis to get fermented SPI films by solution casting. Molecular mass determination of mandelic acid incorporated and fermented SPI films was carried out by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Mandelic acid incorporated and fermented SPI films were characterized by Fourier-transform infrared spectroscopy (FT-IR), dynamic mechanical analysis (DMA), tensile strength, water uptake and optical transmittance studies. Results indicated that incorporation of mandelic acid in SPI resulted… More >

  • Open Access

    ARTICLE

    Rheological Studies on Glycerol Plasticized Gelatin and Its Blends with Epoxidized Soybean Oil

    E. M. Ciannamea1,*, L. A. Castillo2,3, R. A. Ruseckaite1, S. E. Barbosa2,3

    Journal of Renewable Materials, Vol.7, No.1, pp. 21-30, 2019, DOI:10.32604/jrm.2019.00043

    Abstract Blends of gelatin (Ge) plasticized with varying amounts of glycerol (Gly), buffer solution pH 10 and epoxidized soybean oil (ESO) to enhance hydrophobicity were prepared by mixing and injection-molding. Blends were characterized by rheological tests and microscopy to select optimal conditions for scaling up their processing. The effect of each component on rheological response was analyzed using parallel plate geometry. Coating of gelatin specimens with PDMS during rheological tests led to reliable and reproducible results since water evaporation was prevented. A gradual increment in ESO concentration led to blends with increased degree of phase separation, as evidenced by optical and… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Interpenetrating Polymer Networks (IPNs) from Acrylated Soybean Oil a-Resorcylic Acid: Part 2. Thermo-Mechanical Properties and Linear Fracture Mechanics

    Bernal Sibaja1,2,3, Camila Pereira Matheus1,2, Ricardo Ballestero Mendez1,2,Ramsis Farag1,2,4, J. R. Vega-Baudrit3, Maria L. Auad*,1,2

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 241-250, 2017, DOI:10.7569/JRM.2017.634114

    Abstract The thermo-mechanical properties and linear fracture mechanics of acrylated soybean oil and the triglycidylated ether of α-resorcylic acid interpenetrated networks as a function of their weight composition are the focus of Part 2 of this article. Thermo-mechanical characterization showed that the obtained materials behave as thermoset amorphous polymers, and that both the modulus and glass transition are extremely dependent on the epoxy/acrylate weight ratio. Modulus values ranged from 0.7 to 3.3 GPa at 30 °C, and glass transition temperatures ranged from around 58 °C to approx. 130 °C. No synergistic effect on these two properties was observed. Interpenetrating networks containing… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Interpenetrating Polymer Networks (IPNs) from Acrylated Soybean Oil and a-Resorcylic Acid: Part 1. Kinetics of Network Formation

    Bernal Sibaja1,2,3, Camila Pereira Matheus1,2, Ricardo Ballestero Mendez1,2, J. R. Vega-Baudrit3, Maria L. Auad*,1,2

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 231-240, 2017, DOI:10.7569/JRM.2017.634113

    Abstract Interpenetrating polymer networks (IPNs) using an epoxy phase synthesized from chemically modified α-resorcylic acid, and an acrylate phase employing acrylated soybean oil are the main focus of this study. Part 1 details the epoxidation of α-resorcylic acid with epichlorohydrin in alkaline medium, as well as the study of the polymerization and network formation of the generated epoxy-acrylate interpenetrated systems. The epoxy content of the epoxidized α-resorcylic acid was measured by means of a titration using HBr in acetic acid solution, and the functionalization was studied by FTIR. From the obtained results, mainly calorimetry and gel time determination, it was clear… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Polyurethane Rigid Foams from Soybean Oil-Based Polyol and Glycerol

    Facundo I. Altuna1, Borja Fernández-d’Arlas2, M. Angeles Corcuera2, Arantxa Eceiza2, Mirta I. Aranguren3, Pablo M. Stefani3*

    Journal of Renewable Materials, Vol.4, No.4, pp. 275-284, 2016, DOI:10.7569/JRM.2016.634120

    Abstract Mixtures of biomass-derived polyols were used to synthesize rigid polyurethane (PU) foams. A commercial polymerized methylene diphenyl diisocyanate (pMDI) was used as crosslinker, and distilled water served as foaming agent. The morphology and mechanical properties of foams with different glycerol and water contents were compared in order to evaluate the most suitable formulations. The rigid foams with higher water contents had larger and more anisotropic cells, explaining their lower density. Compressive moduli ranged from about 2.5 MPa to above 20 MPa and collapse stresses from 55 kPa to more than 1 MPa for densities between 54 and 143 kg/m3. Densification… More >

  • Open Access

    ARTICLE

    Natural Additive for Reducing Formaldehyde Emissions in Urea-Formaldehyde Resins

    Flávio Pereira1, João Pereira2, Nádia Paiva3, João Ferra3, Jorge Manuel Martins1,4, Fernão D. Magalhães1, and Luísa Carvalho1,4*

    Journal of Renewable Materials, Vol.4, No.1, pp. 41-46, 2016, DOI:10.7569/JRM.2015.634128

    Abstract This work studies the use of soy protein as a natural formaldehyde scavenger in wood particleboard production. The protein is incorporated in two forms: a) as a powder, during the blending process of wood particles with urea-formaldehyde binder resin, and b) as an aqueous solution, added at different times during resin synthesis. Analysis of variance (ANOVA) was used to evaluate the signifi cance level of two effects (amount of added soy and time of addition) on internal bond strength, thickness swelling, and formaldehyde content of the resulting panels. The results showed that soy protein can contribute to decrease the formaldehyde… More >

Displaying 51-60 on page 6 of 57. Per Page