Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (123)
  • Open Access

    ARTICLE

    Statistical Second-order Two-scale Method for Nonstationary Coupled Conduction-Radiation Heat Transfer Problem of Random Porous Materials

    Zhiqiang Yang1, Yufeng Nie2, Yatao Wu2, Zihao Yang2, Yi Sun1

    CMC-Computers, Materials & Continua, Vol.43, No.1, pp. 21-48, 2014, DOI:10.3970/cmc.2014.043.021

    Abstract This paper develops a novel statistical second-order two-scale (SSOTS) method to predict the heat transfer performances of three-dimensional (3D) porous materials with random distribution. Firstly, the mesoscopic configuration for the structure with random distribution is briefly characterized Secondly, the SSOTS formulas for calculating effective thermal conductivity parameters, temperature field and heat flux densities are derived by means of construction way. Then, the algorithm procedure based on the SSOTS method is described in details. Finally, numerical results for porous materials with varying probability distribution models are calculated by SSOTS algorithm, and compared with the data by finite element method (FEM) in… More >

  • Open Access

    ARTICLE

    A Note on Statistical Strength of Carbon Nanotubes

    X. Frank Xu1,2, Yuxin Jie3, Irene J. Beyerlein4

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 17-30, 2013, DOI:10.3970/cmc.2013.038.017

    Abstract This note aims to relate the measured strength statistics of individual carbon nanotubes (CNTs) to the physics of brittle fracture and the weakest link model. By approximating an arbitrary flaw size distribution with a segmented power law, an effort is made to extend applicability of the Weibull distribution to arbitrary flaw populations, which explains why the Weibull distribution fits the experimental data of CNTs and many other brittle materials, and why in other cases it is not so clear. A generalized Weibull distribution is proposed to account for all non-asymptotic cases. The published CNT testing data are analyzed, and finally… More >

  • Open Access

    ARTICLE

    Nearest Particle Distance and the Statistical Distribution of Agglomerates from a Model of a Finite Set of Particles

    J. Zidek1,2, J. Kucera1, J. Jancar1,2

    CMC-Computers, Materials & Continua, Vol.24, No.3, pp. 183-208, 2011, DOI:10.3970/cmc.2011.024.183

    Abstract The structural analysis of a particulate composite with randomly distributed hard spheres is presented based on a model proposed earlier. The structural factors considered include the distribution of interparticle distances and the conditions for particle agglomeration. The interparticle distance was characterized by the nearest particle distance (NPD) and the distance derived from Delaunay triangulation (DT). The distances were calculated for every particle in the particle set and analyzed in the form of a cumulative distribution function (CDF). The CDF provides two parameters: the representation of particles which are in very close proximity to their neighbors and the most frequent distance… More >

Displaying 121-130 on page 13 of 123. Per Page