Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    REVIEW

    Kinked Rebar and Engineering Structures Applying Kinked Materials: State-of-the-Art Review

    Chengquan Wang1,2, Lei Xu3, Xinquan Wang1, Yun Zou3,*, Kangyu Wang4, Boyan Ping5, Xiao Li1

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 233-263, 2025, DOI:10.32604/sdhm.2024.055096 - 15 January 2025

    Abstract Kinked rebar is a special type of steel material, which is installed in beam column nodes and frame beams. It effectively enhances the blast resilience, seismic collapse resistance, and progressive collapse resistance of reinforced concrete (RC) structures without imposing substantial cost burdens, thereby emerging as a focal point of recent research endeavors. On the basis of explaining the working principle of kinked rebars, this paper reviews the research status of kinked rebars at home and abroad from three core domains: the tensile mechanical properties of kinked rebars, beam column nodes with kinked rebars, and concrete… More >

  • Open Access

    ARTICLE

    Cold Drawn Eutectoid Pearlitic Steel Wires as High Performance Materials in Structural Engineering

    J. Toribio 1

    Structural Durability & Health Monitoring, Vol.2, No.4, pp. 239-248, 2006, DOI:10.3970/sdhm.2006.002.239

    Abstract This paper reviews the fracture performance in air and aggressive environment (stress corrosion cracking) of eutectoid prestressing steel wires with different levels of cold drawing. In air environment, a micromechanical model of fracture is proposed to rationalize the results on the basis of the microstructure of the steels after drawing and the model of Miller & Smith of fracture of pearlitic microstructure by shear cracking of the cementite lamellae. In hydrogen assisted cracking (HAC), a microstructure-based model is proposed on the basis of the Miller & Smith model and the mechanism of hydrogen enhanced decohesion or, more More >

Displaying 1-10 on page 1 of 2. Per Page