Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,027)
  • Open Access

    ARTICLE

    Big Data Access Control Mechanism Based on Two-Layer Permission Decision Structure

    Aodi Liu, Na Wang*, Xuehui Du, Dibin Shan, Xiangyu Wu, Wenjuan Wang

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1705-1726, 2024, DOI:10.32604/cmc.2024.049011

    Abstract Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access control mechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policy management efficiency and difficulty in accurately describing the access control policy. To overcome these problems, this paper proposes a big data access control mechanism based on a two-layer permission decision structure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes are introduced in the ABAC model as business constraints between entities. The proposed mechanism implements a two-layer permission decision structure composed of the inherent attributes of… More >

  • Open Access

    ARTICLE

    A Hybrid Level Set Optimization Design Method of Functionally Graded Cellular Structures Considering Connectivity

    Yan Dong1,2, Kang Zhao1, Liang Gao1, Hao Li1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1-18, 2024, DOI:10.32604/cmc.2024.048870

    Abstract With the continuous advancement in topology optimization and additive manufacturing (AM) technology, the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly. However, a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures, potentially resulting in diminished efficiency or macroscopic failure. A Hybrid Level Set Method (HLSM) is proposed, specifically designed to enhance connectivity among non-uniform microstructures, contributing to the design of functionally graded cellular structures. The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces. Initially, an interpolation algorithm is… More >

  • Open Access

    ARTICLE

    On Multi-Granulation Rough Sets with Its Applications

    Radwan Abu-Gdairi1, R. Mareay2,*, M. Badr3

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1025-1038, 2024, DOI:10.32604/cmc.2024.048647

    Abstract Recently, much interest has been given to multi-granulation rough sets (MGRS), and various types of MGRS models have been developed from different viewpoints. In this paper, we introduce two techniques for the classification of MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novel approximation space is established by leveraging the underlying topological structure. The characteristics of the newly proposed approximation space are discussed. We introduce an algorithm for the reduction of multi-relations. Secondly, a new approach for the classification of MGRS based on neighborhood concepts is introduced. Finally, a real-life application from medical records is… More >

  • Open Access

    ARTICLE

    Anomaly Detection Algorithm of Power System Based on Graph Structure and Anomaly Attention

    Yifan Gao*, Jieming Zhang, Zhanchen Chen, Xianchao Chen

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 493-507, 2024, DOI:10.32604/cmc.2024.048615

    Abstract In this paper, we propose a novel anomaly detection method for data centers based on a combination of graph structure and abnormal attention mechanism. The method leverages the sensor monitoring data from target power substations to construct multidimensional time series. These time series are subsequently transformed into graph structures, and corresponding adjacency matrices are obtained. By incorporating the adjacency matrices and additional weights associated with the graph structure, an aggregation matrix is derived. The aggregation matrix is then fed into a pre-trained graph convolutional neural network (GCN) to extract graph structure features. Moreover, both the multidimensional time series segments and… More >

  • Open Access

    ARTICLE

    Ghost Module Based Residual Mixture of Self-Attention and Convolution for Online Signature Verification

    Fangjun Luan1,2,3, Xuewen Mu1,2,3, Shuai Yuan1,2,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 695-712, 2024, DOI:10.32604/cmc.2024.048502

    Abstract Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries. However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. To address these issues, we propose a novel approach for online signature verification, using a one-dimensional Ghost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolution with a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residual structure is introduced to leverage both self-attention and convolution mechanisms for capturing global feature information and extracting local information, effectively complementing whole and local signature features and mitigating… More >

  • Open Access

    ARTICLE

    MIDNet: Deblurring Network for Material Microstructure Images

    Jiaxiang Wang1, Zhengyi Li1, Peng Shi1, Hongying Yu2, Dongbai Sun1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1187-1204, 2024, DOI:10.32604/cmc.2024.046929

    Abstract Scanning electron microscopy (SEM) is a crucial tool in the field of materials science, providing valuable insights into the microstructural characteristics of materials. Unfortunately, SEM images often suffer from blurriness caused by improper hardware calibration or imaging automation errors, which present challenges in analyzing and interpreting material characteristics. Consequently, rectifying the blurring of these images assumes paramount significance to enable subsequent analysis. To address this issue, we introduce a Material Images Deblurring Network (MIDNet) built upon the foundation of the Nonlinear Activation Free Network (NAFNet). MIDNet is meticulously tailored to address the blurring in images capturing the microstructure of materials.… More >

  • Open Access

    ARTICLE

    Optimized General Uniform Quantum State Preparation

    Mark Ariel Levin*

    Journal of Quantum Computing, Vol.6, pp. 15-24, 2024, DOI:10.32604/jqc.2024.047423

    Abstract Quantum algorithms for unstructured search problems rely on the preparation of a uniform superposition, traditionally achieved through Hadamard gates. However, this incidentally creates an auxiliary search space consisting of nonsensical answers that do not belong in the search space and reduce the efficiency of the algorithm due to the need to neglect, un-compute, or destructively interfere with them. Previous approaches to removing this auxiliary search space yielded large circuit depth and required the use of ancillary qubits. We have developed an optimized general solver for a circuit that prepares a uniform superposition of any N states while minimizing depth and… More >

  • Open Access

    ARTICLE

    Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures

    Xue-Qin Li1, Lu-Kai Song2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 665-684, 2024, DOI:10.32604/cmes.2024.048445

    Abstract Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function, leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy. In this case, by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory, a random forest (RF) model is presented to enhance the computing efficiency of reliability degree; moreover, by embedding the RF model into multilevel optimization model, an efficient RF-assisted fatigue reliability-based design optimization framework is developed. Regarding the low-cycle fatigue reliability-based design optimization of… More >

  • Open Access

    ARTICLE

    Blade Wrap Angle Impact on Centrifugal Pump Performance: Entropy Generation and Fluid-Structure Interaction Analysis

    Hayder Kareem Sakran1,2, Mohd Sharizal Abdul Aziz1,*, Chu Yee Khor3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 109-137, 2024, DOI:10.32604/cmes.2024.047245

    Abstract The centrifugal pump is a prevalent power equipment widely used in different engineering patterns, and the impeller blade wrap angle significantly impacts its performance. A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69. This study investigates six impeller models that possess varying blade wrap angles (95°, 105°, 115°, 125°, 135°, and 145°) that were created while maintaining the same volute and other geometrical characteristics. The investigation of energy loss was conducted to evaluate the… More > Graphic Abstract

    Blade Wrap Angle Impact on Centrifugal Pump Performance: Entropy Generation and Fluid-Structure Interaction Analysis

  • Open Access

    ARTICLE

    Study of the Ballistic Impact Behavior of Protective Multi-Layer Composite Armor

    Dongsheng Jia, Yingjie Xu*, Liangdi Wang, Jihong Zhu, Weihong Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 171-199, 2024, DOI:10.32604/cmes.2024.046703

    Abstract The abalone shell, a composite material whose cross-section is composed of inorganic and organic layers, has high strength and toughness. Inspired by the abalone shell, several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper. To investigate the ballistic performance of this multi-layer structure, the complete characterization model and related material parameters of large deformation, failure and fracture of Al2O3 ceramics and Carbon Fiber Reinforced Polymer (CFRP) are studied. Then, 3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary… More >

Displaying 1-10 on page 1 of 1027. Per Page