Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (154)
  • Open Access

    ARTICLE

    Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition

    Yi-Chun Lai1, Shu-Yin Chiang2, Yao-Chiang Kan3, Hsueh-Chun Lin4,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3783-3803, 2024, DOI:10.32604/cmc.2024.050376

    Abstract Artificial intelligence (AI) technology has become integral in the realm of medicine and healthcare, particularly in human activity recognition (HAR) applications such as fitness and rehabilitation tracking. This study introduces a robust coupling analysis framework that integrates four AI-enabled models, combining both machine learning (ML) and deep learning (DL) approaches to evaluate their effectiveness in HAR. The analytical dataset comprises 561 features sourced from the UCI-HAR database, forming the foundation for training the models. Additionally, the MHEALTH database is employed to replicate the modeling process for comparative purposes, while inclusion of the WISDM database, renowned… More > Graphic Abstract

    Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition

  • Open Access

    ARTICLE

    An Imbalanced Data Classification Method Based on Hybrid Resampling and Fine Cost Sensitive Support Vector Machine

    Bo Zhu*, Xiaona Jing, Lan Qiu, Runbo Li

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3977-3999, 2024, DOI:10.32604/cmc.2024.048062

    Abstract When building a classification model, the scenario where the samples of one class are significantly more than those of the other class is called data imbalance. Data imbalance causes the trained classification model to be in favor of the majority class (usually defined as the negative class), which may do harm to the accuracy of the minority class (usually defined as the positive class), and then lead to poor overall performance of the model. A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article, which is based on a new hybrid… More >

  • Open Access

    ARTICLE

    Contrast Normalization Strategies in Brain Tumor Imaging: From Preprocessing to Classification

    Samar M. Alqhtani1, Toufique A. Soomro2,*, Faisal Bin Ubaid3, Ahmed Ali4, Muhammad Irfan5, Abdullah A. Asiri6

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1539-1562, 2024, DOI:10.32604/cmes.2024.051475

    Abstract Cancer-related to the nervous system and brain tumors is a leading cause of mortality in various countries. Magnetic resonance imaging (MRI) and computed tomography (CT) are utilized to capture brain images. MRI plays a crucial role in the diagnosis of brain tumors and the examination of other brain disorders. Typically, manual assessment of MRI images by radiologists or experts is performed to identify brain tumors and abnormalities in the early stages for timely intervention. However, early diagnosis of brain tumors is intricate, necessitating the use of computerized methods. This research introduces an innovative approach for… More > Graphic Abstract

    Contrast Normalization Strategies in Brain Tumor Imaging: From Preprocessing to Classification

  • Open Access

    ARTICLE

    L-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection

    Chuandong Qin1,2, Yu Cao1,*, Liqun Meng1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1975-1994, 2024, DOI:10.32604/cmc.2024.049228

    Abstract Brain tumors come in various types, each with distinct characteristics and treatment approaches, making manual detection a time-consuming and potentially ambiguous process. Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes. Machine learning models have become key players in automating brain tumor detection. Gradient descent methods are the mainstream algorithms for solving machine learning models. In this paper, we propose a novel distributed proximal stochastic gradient descent approach to solve the L-Smooth Support Vector Machine (SVM) classifier for brain tumor detection. Firstly, the smooth hinge loss is… More >

  • Open Access

    ARTICLE

    Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection

    Hala AlShamlan*, Halah AlMazrua*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 675-694, 2024, DOI:10.32604/cmc.2024.048146

    Abstract In this study, our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization (GWO) with Harris Hawks Optimization (HHO) for feature selection. The motivation for utilizing GWO and HHO stems from their bio-inspired nature and their demonstrated success in optimization problems. We aim to leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification. We selected leave-one-out cross-validation (LOOCV) to evaluate the performance of both two widely used classifiers, k-nearest neighbors (KNN) and support vector machine… More >

  • Open Access

    ARTICLE

    Dynamic Hand Gesture-Based Person Identification Using Leap Motion and Machine Learning Approaches

    Jungpil Shin1,*, Md. Al Mehedi Hasan2, Md. Maniruzzaman1, Taiki Watanabe1, Issei Jozume1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1205-1222, 2024, DOI:10.32604/cmc.2024.046954

    Abstract Person identification is one of the most vital tasks for network security. People are more concerned about their security due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprints and faces have been widely used for person identification, which has the risk of information leakage as a result of reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiable pattern, which will not be reproducible falsely by capturing psychological and behavioral information of a person using vision and sensor-based techniques. In existing studies, most… More >

  • Open Access

    ARTICLE

    Differentially Private Support Vector Machines with Knowledge Aggregation

    Teng Wang, Yao Zhang, Jiangguo Liang, Shuai Wang, Shuanggen Liu*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3891-3907, 2024, DOI:10.32604/cmc.2024.048115

    Abstract With the widespread data collection and processing, privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals. Support vector machine (SVM) is one of the most elementary learning models of machine learning. Privacy issues surrounding SVM classifier training have attracted increasing attention. In this paper, we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction, called FedDPDR-DPML, which greatly improves data utility while providing strong privacy guarantees. Considering in distributed learning scenarios, multiple participants usually hold unbalanced or small amounts of data. Therefore, FedDPDR-DPML enables multiple participants to collaboratively learn a global… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

  • Open Access

    ARTICLE

    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    Afnan M. Alhassan*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2207-2223, 2024, DOI:10.32604/cmc.2024.046427

    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has… More >

  • Open Access

    ARTICLE

    Enhanced Steganalysis for Color Images Using Curvelet Features and Support Vector Machine

    Arslan Akram1,2, Imran Khan1, Javed Rashid2,3, Mubbashar Saddique4,*, Muhammad Idrees4, Yazeed Yasin Ghadi5, Abdulmohsen Algarni6

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1311-1328, 2024, DOI:10.32604/cmc.2023.040512

    Abstract Algorithms for steganography are methods of hiding data transfers in media files. Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information, and these methods have made it feasible to handle a wide range of problems associated with image analysis. Images with little information or low payload are used by information embedding methods, but the goal of all contemporary research is to employ high-payload images for classification. To address the need for both low- and high-payload images, this work provides a machine-learning approach to steganography image classification… More >

Displaying 1-10 on page 1 of 154. Per Page