Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Investigation on Shear Performance of Concrete T-Beam Bridge Strengthened Using UHPC

    Zhiyong Wan1, Guozhang Luo2, Pailin Fang2, Menghui Ji2, Zhizhao Ou3, Shaohua He3,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1327-1341, 2025, DOI:10.32604/sdhm.2025.065177 - 05 September 2025

    Abstract This investigation examines the shear performance of concrete T-beams reinforced with thin layers of ultra-high performance concrete (UHPC) through an approach that integrates experimental evaluation, numerical simulation, and practical project verification. The research is based on a real bridge, and in accordance with the similarity principle, three reduced-scale T-beams with varying UHPC thicknesses were fabricated and tested to examine their failure modes and shear behaviors. A finite element model was created to enhance understanding of how UHPC reinforces these structures, while also considering the effects of material strength and arrangement. In addition to the laboratory… More >

  • Open Access

    ARTICLE

    Study on Seismic Performance of Continuous T-Beam Bridge—Kulungou Bridge

    Jiuqing Zhou1,2,3, Daming Lin4, Leifa Li1,2,3, Guanghui Zhang1,2,3, Shumao Qiu4,*

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 705-729, 2025, DOI:10.32604/sdhm.2025.060298 - 03 April 2025

    Abstract The objective of this research is to assess the seismic behavior of the continuous T-beam bridge located at Kulungou in Xinjiang. In addition to traditional static and modal analyses, this study introduces a novel approach by comprehensively examining the performance of the bridge during construction stages, under ultimate load capacities and seismic load. Compliance with regulatory standards is verified by the static analysis, which also yields a thorough comprehension of stress distribution across various stages of construction. By unveiling the initial 100 vibration modes, the modal analysis has significantly enhanced our comprehension and established… More >

  • Open Access

    ARTICLE

    Performance Evaluation of Damaged T-Beam Bridges with External Prestressing Reinforcement Based on Natural Frequencies

    Menghui Hao1, Shanshan Zhou1, Yongchao Han1, Zhanwei Zhu1, Qiang Yang2, Panxu Sun2,*, Jiajun Fan2

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 399-415, 2025, DOI:10.32604/sdhm.2024.056250 - 15 January 2025

    Abstract As an evaluation index, the natural frequency has the advantages of easy acquisition and quantitative evaluation. In this paper, the natural frequency is used to evaluate the performance of external cable reinforced bridges. Numerical examples show that compared with the natural frequencies of first-order modes, the natural frequencies of higher-order modes are more sensitive and can reflect the damage situation and external cable reinforcement effect of T-beam bridges. For damaged bridges, as the damage to the T-beam increases, the natural frequency value of the bridge gradually decreases. When the degree of local damage to the… More >

Displaying 1-10 on page 1 of 3. Per Page