Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5,681)
  • Open Access

    ARTICLE

    Multi-Algorithm Machine Learning Framework for Predicting Crystal Structures of Lithium Manganese Silicate Cathodes Using DFT Data

    Muhammad Ishtiaq1, Yeon-Ju Lee2, Annabathini Geetha Bhavani3, Sung-Gyu Kang1,*, Nagireddy Gari Subba Reddy2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.075957 - 10 February 2026

    Abstract Lithium manganese silicate (Li-Mn-Si-O) cathodes are key components of lithium-ion batteries, and their physical and mechanical properties are strongly influenced by their underlying crystal structures. In this study, a range of machine learning (ML) algorithms were developed and compared to predict the crystal systems of Li-Mn-Si-O cathode materials using density functional theory (DFT) data obtained from the Materials Project database. The dataset comprised 211 compositions characterized by key descriptors, including formation energy, energy above the hull, bandgap, atomic site number, density, and unit cell volume. These features were utilized to classify the materials into monoclinic… More >

  • Open Access

    ARTICLE

    A Knowledge-Distilled CharacterBERT-BiLSTM-ATT Framework for Lightweight DGA Detection in IoT Devices

    Chengqi Liu1, Yongtao Li2, Weiping Zou3,*, Deyu Lin4,5,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074975 - 10 February 2026

    Abstract With the large-scale deployment of the Internet of Things (IoT) devices, their weak security mechanisms make them prime targets for malware attacks. Attackers often use Domain Generation Algorithm (DGA) to generate random domain names, hiding the real IP of Command and Control (C&C) servers to build botnets. Due to the randomness and dynamics of DGA, traditional methods struggle to detect them accurately, increasing the difficulty of network defense. This paper proposes a lightweight DGA detection model based on knowledge distillation for resource-constrained IoT environments. Specifically, a teacher model combining CharacterBERT, a bidirectional long short-term memory More >

  • Open Access

    ARTICLE

    DFT Insights into the Detection of NH3, AsH3, PH3, CO2, and CH4 Gases with Pristine and Monovacancy Phosphorene Sheets

    Naresh Kumar1, Anuj Kumar1,*, Abhishek K. Mishra2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074430 - 10 February 2026

    Abstract Density functional theory (DFT) calculations were employed to investigate the adsorption behavior of NH3, AsH3, PH3, CO2, and CH4 molecules on both pristine and mono-vacancy phosphorene sheets. The pristine phosphorene surface shows weak physisorption with all the gas molecules, inducing only minor changes in its structural and electronic properties. However, the introduction of mono-vacancies significantly enhances the interaction strength with NH3, PH3, CO2, and CH4. These variations are attributed to substantial charge redistribution and orbital hybridization in the presence of defects. The defective phosphorene sheet also exhibits enhanced adsorption energies, along with favorable sensitivity and recovery characteristics, highlighting its potential More >

  • Open Access

    ARTICLE

    HMA-DER: A Hierarchical Attention and Expert Routing Framework for Accurate Gastrointestinal Disease Diagnosis

    Sara Tehsin1, Inzamam Mashood Nasir1,*, Wiem Abdelbaki2, Fadwa Alrowais3, Khalid A. Alattas4, Sultan Almutairi5, Radwa Marzouk6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074416 - 10 February 2026

    Abstract Objective: Deep learning is employed increasingly in Gastroenterology (GI) endoscopy computer-aided diagnostics for polyp segmentation and multi-class disease detection. In the real world, implementation requires high accuracy, therapeutically relevant explanations, strong calibration, domain generalization, and efficiency. Current Convolutional Neural Network (CNN) and transformer models compromise border precision and global context, generate attention maps that fail to align with expert reasoning, deteriorate during cross-center changes, and exhibit inadequate calibration, hence diminishing clinical trust. Methods: HMA-DER is a hierarchical multi-attention architecture that uses dilation-enhanced residual blocks and an explainability-aware Cognitive Alignment Score (CAS) regularizer to directly align… More >

  • Open Access

    ARTICLE

    Detecting and Mitigating Cyberattacks on Load Frequency Control with Battery Energy Storage System

    Yunhao Yu1, Fuhua Luo1, Zhenyong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074277 - 10 February 2026

    Abstract This paper investigates the detection and mitigation of coordinated cyberattacks on Load Frequency Control (LFC) systems integrated with Battery Energy Storage Systems (BESS). As renewable energy sources gain greater penetration, power grids are becoming increasingly vulnerable to cyber threats, potentially leading to frequency instability and widespread disruptions. We model two significant attack vectors: load-altering attacks (LAAs) and false data injection attacks (FDIAs) that corrupt frequency measurements. These are analyzed for their impact on grid frequency stability in both linear and nonlinear LFC models, incorporating generation rate constraints and nonlinear loads. A coordinated attack strategy is… More >

  • Open Access

    ARTICLE

    Unlocking Edge Fine-Tuning: A Sample-Efficient Language-Empowered Split Fine-Tuning Framework

    Zuyi Huang1, Yue Wang1, Jia Liu2, Haodong Yi1, Lejun Ai1, Min Chen1,3,*, Salman A. AlQahtani4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074034 - 10 February 2026

    Abstract The personalized fine-tuning of large language models (LLMs) on edge devices is severely constrained by limited computation resources. Although split federated learning alleviates on-device burdens, its effectiveness diminishes in few-shot reasoning scenarios due to the low data efficiency of conventional supervised fine-tuning, which leads to excessive communication overhead. To address this, we propose Language-Empowered Split Fine-Tuning (LESFT), a framework that integrates split architectures with a contrastive-inspired fine-tuning paradigm. LESFT simultaneously learns from multiple logically equivalent but linguistically diverse reasoning chains, providing richer supervisory signals and improving data efficiency. This process-oriented training allows more effective reasoning More >

  • Open Access

    REVIEW

    Quantum Secure Multiparty Computation: Bridging Privacy, Security, and Scalability in the Post-Quantum Era

    Sghaier Guizani1,*, Tehseen Mazhar2,3,*, Habib Hamam4,5,6,7

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073883 - 10 February 2026

    Abstract The advent of quantum computing poses a significant challenge to traditional cryptographic protocols, particularly those used in Secure Multiparty Computation (MPC), a fundamental cryptographic primitive for privacy-preserving computation. Classical MPC relies on cryptographic techniques such as homomorphic encryption, secret sharing, and oblivious transfer, which may become vulnerable in the post-quantum era due to the computational power of quantum adversaries. This study presents a review of 140 peer-reviewed articles published between 2000 and 2025 that used different databases like MDPI, IEEE Explore, Springer, and Elsevier, examining the applications, types, and security issues with the solution of… More >

  • Open Access

    ARTICLE

    Virtual QPU: A Novel Implementation of Quantum Computing

    Danyang Zheng*, Jinchen Xv, Xin Zhou, Zheng Shan

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073860 - 10 February 2026

    Abstract The increasing popularity of quantum computing has resulted in a considerable rise in demand for cloud quantum computing usage in recent years. Nevertheless, the rapid surge in demand for cloud-based quantum computing resources has led to a scarcity. In order to meet the needs of an increasing number of researchers, it is imperative to facilitate efficient and flexible access to computing resources in a cloud environment. In this paper, we propose a novel quantum computing paradigm, Virtual QPU (VQPU), which addresses this issue and enhances quantum cloud throughput with guaranteed circuit fidelity. The proposal introduces More >

  • Open Access

    ARTICLE

    OPOR-Bench: Evaluating Large Language Models on Online Public Opinion Report Generation

    Jinzheng Yu1, Yang Xu2, Haozhen Li2, Junqi Li3, Ligu Zhu1, Hao Shen1,*, Lei Shi1,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073771 - 10 February 2026

    Abstract Online Public Opinion Reports consolidate news and social media for timely crisis management by governments and enterprises. While large language models (LLMs) enable automated report generation, this specific domain lacks formal task definitions and corresponding benchmarks. To bridge this gap, we define the Automated Online Public Opinion Report Generation (OPOR-Gen) task and construct OPOR-Bench, an event-centric dataset with 463 crisis events across 108 countries (comprising 8.8 K news articles and 185 K tweets). To evaluate report quality, we propose OPOR-Eval, a novel agent-based framework that simulates human expert evaluation. Validation experiments show OPOR-Eval achieves a More >

  • Open Access

    ARTICLE

    Evolve and Revoke: A Secure and Efficient Conditional Proxy Re-Encryption Scheme with Ciphertext Evolution

    Han-Yu Lin, Tung-Tso Tsai*, Yi-Jia Ye

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073553 - 10 February 2026

    Abstract Cloud data sharing is an important issue in modern times. To maintain the privacy and confidentiality of data stored in the cloud, encryption is an inevitable process before uploading the data. However, the centralized management and transmission latency of the cloud makes it difficult to support real-time processing and distributed access structures. As a result, fog computing and the Internet of Things (IoT) have emerged as crucial applications. Fog-assisted proxy re-encryption is a commonly adopted technique for sharing cloud ciphertexts. It allows a semi-trusted proxy to transform a data owner’s ciphertext into another re-encrypted ciphertext… More >

Displaying 1-10 on page 1 of 5681. Per Page