Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    INFLUENCE OF CONVECTIVE BOUNDARY CONDITION ON NONLINEAR THERMAL CONVECTION FLOW OF A MICROPOLAR FLUID SATURATED POROUS MEDIUM WITH HOMOGENEOUS-HETEROGENEOUS REACTIONS

    Chetteti RamReddya,†, Teegala Pradeepaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.6

    Abstract A numerical approach has been used to analyze the effects of homogeneous-heterogeneous reaction and nonlinear density temperature variation over a vertical plate in an incompressible micropolar fluid flow saturated Darcy porous medium. In addition, convective boundary condition is incorporated in a micropolar fluid model. The similarity representation for the set of partial differential equations is attained by applying Lie group transformations. The resulting non-dimensional equations are worked out numerically by spectral quasi-linearization method. Less temperature and wall couple stress coefficient, but more velocity, skin friction, species concentration, and heat transfer rate are noticed by enhancing the nonlinear convection parameter. It… More >

  • Open Access

    ARTICLE

    MHD FLOW AND HEAT TRANSFER IN A WILLIAMSON FLUID FROM A VERTICAL PERMEABLE CONE WITH THERMAL AND MOMENTUM SLIP EFFECTS: A MATHEMATICAL STUDY

    CH. Amanullaa,b,* , N. Nagendraa , M. Suryanarayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.40

    Abstract A theoretical and computational study of the magneto hydrodynamic flow and free convection heat transfer in an electro-conductive polymer on the external surface of a vertical permeable cone under radial magnetic field is presented. Thermal and velocity (hydrodynamic) slip are considered at the vertical permeable cone surface via modified boundary conditions. The Williamson viscoelastic model is employed which is representative of certain industrial polymers. The non-dimensional, transformed boundary layer equations for momentum and energy are solved with the second order accurate implicit Keller box finite difference method under appropriate boundary conditions. Validation of the numerical solutions is achieved via benchmarking… More >

  • Open Access

    ARTICLE

    VARIABLE HEAT SOURCE AND WALL RADIATION EFFECTS ON BOUNDARY LAYER CONVECTION FROM AN INCLINED PLATE IN NON-DARCIAN POROUS MEDIUM

    Elyazid Flilihia,† , Mohammed Sritia , Driss Achemlalb , Mohamed El harouia

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.23

    Abstract A semi - analytical investigation is performed to analyze the thermal convection flow with a radiation flux and a variable internal heat generation along an inclined plate embedded in a saturated porous medium. The flow in the porous medium is modeled with the Darcy-Brinkman law taking into account the convective term, while the temperature field is obtained from the energy equation. These governing equations with the boundary conditions are first cast into a dimensionless form by using a unique similarity transformation and the resulting coupled differential equations are then solved numerically by a computational program based on the fifth order… More >

  • Open Access

    ARTICLE

    THERMAL AND MOMENTUM SLIP EFFECTS ON HYDROMAGNETIC CONVECTION FLOW OF A WILLIAMSON FLUID PAST A VERTICAL TRUNCATED CONE

    CH. Amanullaa,b,* , N. Nagendraa , M. Suryanarayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.22

    Abstract In this article, the combined theoretical and computational study of the magneto hydrodynamic heat transfer in an electro-conductive polymer on the external surface of a vertical truncated cone under radial magnetic field is presented. Thermal and velocity (hydrodynamic) slip are considered at the vertical truncated cone surface via modified boundary conditions. The Williamson viscoelastic model is employed which is representative of certain industrial polymers. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum and energy equations via appropriate non-similarity transformations. These transformed conservation equations are solved subject to… More >

  • Open Access

    ARTICLE

    Prandtl Number Signature on Flow Patterns of Electrically Conducting Fluid in Square Enclosure

    Ridha Djebali1,2, Bernard Pateyron2, Mohamed El Ganaoui3

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.4, pp. 293-308, 2012, DOI:10.3970/cmes.2012.088.293

    Abstract We present in this study a numerical investigation of unsteady two-dimensional natural convection of an electrically conducting fluid in a square cavity under an externally imposed magnetic field. A temperature gradient is applied between the two opposing side walls parallel to y-direction, while the floor and ceiling parallel to x-direction are adiabatic. The flow is characterized by the Rayleigh number Ra raged in 103-106, the Prandtl number Pr ranged in 0.01-10, the Hartman number Ha determined by the strength of the imposed magnetic field ranged in 0-100 and its tilting angle from x-axis ranging from 0 to 90 . The… More >

  • Open Access

    ARTICLE

    A 2D Lattice Boltzmann Full Analysis of MHD Convective Heat Transfer in Saturated Porous Square Enclosure

    Ridha Djebali1,2, Mohamed ElGanaoui3, Taoufik Naffouti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.6, pp. 499-527, 2012, DOI:10.3970/cmes.2012.084.499

    Abstract A thermal lattice Boltzmann model for incompressible flow is developed and extended to investigate the natural convection flow in porous media under the effect of uniform magnetic field. The study shows that the flow behaviour is various parameters dependent. The Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da) and the medium inclination angle from the horizontal (Φ), the magnetic field orientation (ψ) and the medium porosity (ε) effects are carried out in wide ranges encountered in industrial and engineering applications. It was found that the flow and temperature patterns change significantly when varying these parameters. To confirm the accuracy… More >

  • Open Access

    ARTICLE

    3-Dimensional Analysis of Flow Patterns and Temperature Profiles for the Growth of InGaSb by Rotational Bridgman Method

    T. Ozawa1, N. Ishigami1, Y. Hayakawa2, T. Koyama2, M. Kumagawa2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 1-6, 2000, DOI:10.3970/cmes.2000.001.161

    Abstract To investigate the solution convection in the rotational Bridgman method, both flow patterns and temperature distributions were calculated by solving three equations in 3-dimensional analysis: Navier-Stokes, continuity and energy. We focused on the relationship between ampoule rotational rate and temperature distribution in the growth solution reservoir. In the 3-dimensional model, In-Ga-Sb solution was put between GaSb seed and feed crystals, where seed and feed crystals were cylindrical in shape, and the In-Ga-Sb solution was semi-cylindrical. The ampoule rotational rate was changed in a range of 0 to 100 rpm. By increasing the ampoule rotational rate, the flow velocity in the… More >

  • Open Access

    ARTICLE

    Effect of Suspended Particles on the Onset of Thermal Convection in a Compressible Viscoelastic Fluid in a Darcy-Brinkman Porous Medium

    G. C. Rana1, R. C. Thakur2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 251-265, 2013, DOI:10.3970/fdmp.2013.009.251

    Abstract In this paper, the effect of suspended particles on thermal convection in a compressible viscoelastic fluid hosted in a porous medium is considered. For the porous medium, the Brinkman model is employed with the Rivlin-Ericksen approach used in parallel to describe the rheological behaviour of the viscoelastic fluid. By applying a normal mode analysis method, a dispersion relation is derived and solved analytically. It is observed that the medium permeability, suspended particles, gravity field and viscoelasticity introduce oscillatory modes. For stationary convection, it is found that the Darcy-Brinkman number has a stabilizing effect whereas the suspended particles and medium permeability… More >

Displaying 1-10 on page 1 of 8. Per Page