Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access



    Benjamin Lepersa,*, Aditya Putrantob,c, Martin Ummingerd, Guido Linka, John Jelonneka

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-11, 2014, DOI:10.5098/hmt.5.13

    Abstract The use of high power microwaves to perform explosive spalling of surface concrete is a promising technique with applications in the area of concrete facilities decommissioning. The mechanism that creates explosive spalling is an interactive process of the thermal stress from high temperature gradients and the pore pressure generated from the water vaporization. In order to better predict the total stress distribution, the temperature has to be calculated by including the effect of water vaporization and water transport through a porous medium. In this paper, a one dimensional model solving the heat and diffusion equation for liquid and vapor phase… More >

  • Open Access


    Fluid-Structure Coupled Analysis of the Transient Thermal Stress in an Exhaust Manifold

    Liang Yi1,*, Wen Gang1, Nenggui Pan2, Wangui Wang1, Shengshuai Mo1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2777-2790, 2023, DOI:10.32604/fdmp.2023.021907

    Abstract The development of thermal stress in the exhaust manifold of a gasoline engine is considered. The problem is addresses in the frame of a combined approach where fluid and structure are coupled using the GT-POWER and STAR-CCM+ software. First, the external characteristic curve of the engine is compared with a one-dimensional simulation model, then the parameters of the model are modified until the curve matches the available experimental values. GT-POWER is then used to transfer the inlet boundary data under transient conditions to STAR-CCM+ in real-time. The temperature profiles of the inner and outer walls of the exhaust manifold are… More >

  • Open Access



    Mahmoud A. Ismaila, Shadia Fathi Mohamed El Sherif a , A. A. El-Baryb,*, Hamdy M. Youssefc

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-7, 2020, DOI:10.5098/hmt.14.3

    Abstract In this paper we will discuss the problem of distribution of thermal stresses and temperature in a generalized magneto–thermo-viscoelastic solid spherical cavity of radius R according to Green- Naghdi (G-N II) and (G-N III) theory. The surface of the cavity is assumed to be free traction and subjected to a constant thermal shock. The Laplace transform technique is used to solve the problem. The state space approach is adopted for the solution of one dimensional problem. Solution of the problem in the physical domain are obtained by using a numerical method of MATLAP Programmer and the expression for the temperature,… More >

  • Open Access



    Alaa K. Khamisa , Allal Bakalia, A. A. El-Baryb,c,*, Haitham M. Atefd

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-6, 2020, DOI:10.5098/hmt.15.24

    Abstract In this paper the effect of the magnetic field and Seebeck parameter was investigated. Modified Ohm's law that includes effects of the temperature gradient (Seebeck effect More >

  • Open Access


    Emerging environmental stressors and oxidative pathways in marine organisms: Current knowledge on regulation mechanisms and functional effects


    BIOCELL, Vol.46, No.1, pp. 37-49, 2022, DOI:10.32604/biocell.2022.017507

    Abstract Oxidative stress is a critical condition derived from the imbalance between the generation of reactive oxygen species and the sophisticated network of antioxidant mechanisms. Several pollutants and environmental factors can affect this system through connected mechanisms, indirect relationships, and cascade effects from pre-transcriptional to catalytic level, by either enhancing intracellular ROS formation or impairing antioxidant defenses. This review summarizes the current knowledge on the pro-oxidant challenges from emerging environmental stressors threatening marine organisms, such as pharmaceuticals, microplastics and climate-related ocean changes. Emphasis will be placed on oxidative pathways, including signaling proteins and transcription factors involved in regulation of antioxidant responsiveness.… More >

  • Open Access


    Numerical Solution of a Problem of Thermal Stresses of a Magnetothermoelastic Cylinder with Rotation by Finite-Difference Method

    F. S. Bayones1, A. M. Abd-Alla2, A. M. Farhan3,4,*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3339-3352, 2021, DOI:10.32604/cmc.2021.016021

    Abstract The present article deals with the investigation thermal stress of a magnetothermoelastic cylinder subjected to rotation, open or closed circuit, thermal and mechanical boundary conditions. The outer and inner surfaces of the cylinder are subjected to both mechanical and thermal boundary conditions. A The transient coupled thermoelasticity in an infinite cylinder with its base abruptly exposed to a heat flux of a decaying exponential function of time is devised solve by the finite-difference method. The fundamental equations’ system is solved by utilizing an implicit finite-difference method. This current method is a second-order accurate in time and space; it is also… More >

  • Open Access


    Improving Mechanical Properties of Vitrified Umbilical Arteries with Magnetic Warming

    Mengyuan Cao, Yi Xu*, Yilin Dong

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 123-139, 2021, DOI:10.32604/fdmp.2021.011443

    Abstract The damage caused by thermal stress during rewarming vitrified biosamples is one of the major obstacles for clinical purposes. Magnetic warming is a highly effective approach to overcome this hurdle and can achieve rapid and spatially homogeneous heating. The current research investigates the effects of magnetic warming on the histological and biomechanical properties of the vitrified umbilical arteries (UAs) through experiments and simulation. The results of experiments show that, for the case of magnetic warming comparing with the conventional water bath, magnetic warming presents better preservation of extracellular matrix (ECM), collagen fibers, elastic fibers, and muscle fibers of the umbilical… More >

  • Open Access


    Rayleigh Waves Propagation in an Infinite Rotating Thermoelastic Cylinder

    A. M. Farhan1,2,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2515-2525, 2021, DOI:10.32604/cmc.2021.014255

    Abstract In this paper, we investigated the inuence of rotating half-space on the propagation of Rayleigh waves in a homogeneous isotropic, generalized thermo-elastic body, subject to the boundary conditions that the surface is traction free. In addition, it is subject to insulating thermal conduction. A general solution is obtained by using Lame’ potential’s and Hankel transform. The dispersion equations has been derived separately for two types of Rayleigh wave propagation properties by solving the equations of motion with appropriate boundary conditions. It is observed that the rotation, frequency and r exert some influence in the homogeneous isotropic medium due to propagation… More >

  • Open Access


    Propagation of a Thermoelastic Wave in a Half-Space of a Homogeneous Isotropic Material Subjected to the Effect of Rotation and Initial Stress

    Fatima Bayones1, Abdelmooty Abd-Alla2, *, Raghad Alfatta3, Hoda Al-Nefaie3

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 551-567, 2020, DOI:10.32604/cmc.2020.08420

    Abstract The propagation of thermoelastic waves in a homogeneous, isotropic elastic semi-infinite space is subjected to rotation and initial stress, which is at temperature T0 - initially, and whose boundary surface is subjected to heat source and load moving with finite velocity. Temperature and stress distribution occurring due to heating or cooling and have been determined using certain boundary conditions. Numerical results have been given and illustrated graphically in each case considered. Comparison is made with the results predicted by the theory of thermoelasticity in the absence of rotation and initial stress. The results indicate that the effect of the rotation… More >

  • Open Access


    Effects of Heat Affected Zones Temperature on the General Performance of High Temperature Vacuum Tube Furnace

    A.B. Mahmud Hasan1,2, M A Wahab1, S.M. Guo1

    Structural Durability & Health Monitoring, Vol.4, No.4, pp. 231-240, 2008, DOI:10.3970/sdhm.2008.004.231

    Abstract This paper presents details analysis of Heat Affected Zone (HAZ) in High Temperature Vacuum Tube Furnace (HTVTF) to predict fracture region in tube wall due to thermal stress from temperature variation across its thickness. A simple mathematical model is used to illustrate stress concentration arising due to thermal stresses in tube wall and HAZs. Finite element model and analysis were carried out utilizing finite element analysis commercial codes. Combination of thermal stress due to temperature difference determine fracture region. Experimental and simulation results of inside temperature of tube are observed and similar relation have been found. Observation of heat affected… More >

Displaying 1-10 on page 1 of 18. Per Page