Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    REVIEW

    FSL-TM: Review on the Integration of Federated Split Learning with TinyML in the Internet of Vehicles

    Meenakshi Aggarwal1, Vikas Khullar2,*, Nitin Goyal3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.072673 - 09 December 2025

    Abstract The Internet of Vehicles, or IoV, is expected to lessen pollution, ease traffic, and increase road safety. IoV entities’ interconnectedness, however, raises the possibility of cyberattacks, which can have detrimental effects. IoV systems typically send massive volumes of raw data to central servers, which may raise privacy issues. Additionally, model training on IoV devices with limited resources normally leads to slower training times and reduced service quality. We discuss a privacy-preserving Federated Split Learning with Tiny Machine Learning (TinyML) approach, which operates on IoV edge devices without sharing sensitive raw data. Specifically, we focus on… More >

  • Open Access

    REVIEW

    A Literature Review on Model Conversion, Inference, and Learning Strategies in EdgeML with TinyML Deployment

    Muhammad Arif1,*, Muhammad Rashid2

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 13-64, 2025, DOI:10.32604/cmc.2025.062819 - 26 March 2025

    Abstract Edge Machine Learning (EdgeML) and Tiny Machine Learning (TinyML) are fast-growing fields that bring machine learning to resource-constrained devices, allowing real-time data processing and decision-making at the network’s edge. However, the complexity of model conversion techniques, diverse inference mechanisms, and varied learning strategies make designing and deploying these models challenging. Additionally, deploying TinyML models on resource-constrained hardware with specific software frameworks has broadened EdgeML’s applications across various sectors. These factors underscore the necessity for a comprehensive literature review, as current reviews do not systematically encompass the most recent findings on these topics. Consequently, it provides… More >

  • Open Access

    ARTICLE

    Optimized Binary Neural Networks for Road Anomaly Detection: A TinyML Approach on Edge Devices

    Amna Khatoon1, Weixing Wang1,*, Asad Ullah2, Limin Li3,*, Mengfei Wang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 527-546, 2024, DOI:10.32604/cmc.2024.051147 - 18 July 2024

    Abstract Integrating Tiny Machine Learning (TinyML) with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level. Constrained devices efficiently implement a Binary Neural Network (BNN) for road feature extraction, utilizing quantization and compression through a pruning strategy. The modifications resulted in a 28-fold decrease in memory usage and a 25% enhancement in inference speed while only experiencing a 2.5% decrease in accuracy. It showcases its superiority over conventional detection algorithms in different road image scenarios. Although constrained by computer resources and training datasets, our results indicate opportunities for More >

  • Open Access

    ARTICLE

    TinyML-Based Classification in an ECG Monitoring Embedded System

    Eunchan Kim1, Jaehyuk Kim2, Juyoung Park3, Haneul Ko4, Yeunwoong Kyung5,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1751-1764, 2023, DOI:10.32604/cmc.2023.031663 - 06 February 2023

    Abstract Recently, the development of the Internet of Things (IoT) has enabled continuous and personal electrocardiogram (ECG) monitoring. In the ECG monitoring system, classification plays an important role because it can select useful data (i.e., reduce the size of the dataset) and identify abnormal data that can be used to detect the clinical diagnosis and guide further treatment. Since the classification requires computing capability, the ECG data are usually delivered to the gateway or the server where the classification is performed based on its computing resource. However, real-time ECG data transmission continuously consumes battery and network… More >

  • Open Access

    ARTICLE

    TinyML-Based Fall Detection for Connected Personal Mobility Vehicles

    Ramon Sanchez-Iborra1, Luis Bernal-Escobedo2, Jose Santa3,*, Antonio Skarmeta2

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3869-3885, 2022, DOI:10.32604/cmc.2022.022610 - 07 December 2021

    Abstract A new wave of electric vehicles for personal mobility is currently crowding public spaces. They offer a sustainable and efficient way of getting around in urban environments, however, these devices bring additional safety issues, including serious accidents for riders. Thereby, taking advantage of a connected personal mobility vehicle, we present a novel on-device Machine Learning (ML)-based fall detection system that analyzes data captured from a range of sensors integrated on an on-board unit (OBU) prototype. Given the typical processing limitations of these elements, we exploit the potential of the TinyML paradigm, which enables embedding powerful More >

Displaying 1-10 on page 1 of 5. Per Page