Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (87)
  • Open Access

    ARTICLE

    Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology Optimization Method Based on Stress Constraint

    Zibin Mao1, Qinghai Zhao1,2,*, Liang Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 757-792, 2024, DOI:10.32604/cmes.2024.048016

    Abstract This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design. The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads. The topology optimization formula is combined with the ordered solid isotropic material with penalization (ordered-SIMP) multi-material interpolation model. The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function. Furthermore, the sequential optimization and reliability assessment (SORA) is applied to… More >

  • Open Access

    ARTICLE

    Full-Scale Isogeometric Topology Optimization of Cellular Structures Based on Kirchhoff–Love Shells

    Mingzhe Huang, Mi Xiao*, Liang Gao, Mian Zhou, Wei Sha, Jinhao Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2479-2505, 2024, DOI:10.32604/cmes.2023.045735

    Abstract Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio. In this paper, a full-scale isogeometric topology optimization (ITO) method based on Kirchhoff–Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed. This method utilizes high-order continuous nonuniform rational B-splines (NURBS) as basis functions for Kirchhoff–Love shell elements. The geometric and analysis models of thin shells are unified by isogeometric analysis (IGA) to avoid geometric approximation error and improve computational accuracy. The topological configurations of thin-shell structures are described by constructing the effective density field on the control… More >

  • Open Access

    ARTICLE

    Topology Optimization of Metamaterial Microstructures for Negative Poisson’s Ratio under Large Deformation Using a Gradient-Free Method

    Weida Wu, Yiqiang Wang, Zhonghao Gao, Pai Liu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2001-2026, 2024, DOI:10.32604/cmes.2023.046670

    Abstract Negative Poisson’s ratio (NPR) metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption. However, when subjected to significant stretching, NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance. To address this issue, this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism. A representative periodic unit cell is modeled considering geometry nonlinearity, and its topology is designed using a gradient-free method. The unit cell microstructural topologies are described with the material-field series-expansion (MFSE) method. The… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Topology Optimization Method Considering Multiple Structural Performances

    Wenjun Chen1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023. 09096

    Abstract The rapid development of topology optimization has given birth to a large amount of different topology optimization methods, and each of them can manage a class of corresponding engineering problems. However, structures need to meet a variety of requirements in engineering application, such as lightweight and multiple load-bearing performance. To design composite structures that have multiple structural properties, a new multi-scale topology optimization method considering multiple structural performances is proposed in this paper. Based on the fitting functions of the result set and the bisection method, a new method to determine the weight coefficient is proposed in this paper, which… More >

  • Open Access

    PROCEEDINGS

    A Machine Learning Framework for Isogeometric Topology Optimization

    Haobo Zhang1, Ziao Zhuang1, Chen Yu2, Zhaohui Xia1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09091

    Abstract Topology optimization (TO) is an important and powerful tool to obtain efficient and lightweight structures in conceptional design stage and a series of representative methods are implemented [1-5]. TO are mainly based on the classical finite element analysis (FEA), resulting in an inconsistency between geometric model and analytical model. Besides, there are some drawbacks of low analysis accuracy, poor continuity between adjacent elements, and high computational cost for high-order meshes. Thus, isogeometric analysis (IGA) is proposed [6] to replace FEA in TO. Using the Non-Uniform Rational B-Splines (NURBS), IGA successfully eliminates the defects of the conventional FEA and forms a… More >

  • Open Access

    ARTICLE

    A Subdivision-Based Combined Shape and Topology Optimization in Acoustics

    Chuang Lu1, Leilei Chen2,3, Jinling Luo4, Haibo Chen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 847-872, 2024, DOI:10.32604/cmes.2023.044446

    Abstract We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces. The existing structural optimization methods mainly contain shape and topology schemes, with the former changing the surface geometric profile of the structure and the latter changing the material distribution topology or hole topology of the structure. In the present acoustic performance optimization, the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure, the artificial density of the sound absorbing material covered on the… More >

  • Open Access

    REVIEW

    An Overview of Sequential Approximation in Topology Optimization of Continuum Structure

    Kai Long1, Ayesha Saeed1, Jinhua Zhang2, Yara Diaeldin1, Feiyu Lu1, Tao Tao3, Yuhua Li1,*, Pengwen Sun4, Jinshun Yan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 43-67, 2024, DOI:10.32604/cmes.2023.031538

    Abstract This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures. These structures, commonly encountered in engineering applications, often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables. As a result, sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges. Over the past several decades, topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds. In comparison to the large-scale equation solution,… More >

  • Open Access

    ARTICLE

    Web Layout Design of Large Cavity Structures Based on Topology Optimization

    Xiaoqiao Yang, Jialiang Sun*, Dongping Jin

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2665-2689, 2024, DOI:10.32604/cmes.2023.031482

    Abstract Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades and wings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumption has become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topology optimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By using the variable density method, lightweight design is achieved without compromising structural strength. The optimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivity filtering and projection to obtain a robust optimized configuration. The mechanical properties are… More >

  • Open Access

    ARTICLE

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

    Zhaohui Xia1,3, Baichuan Gao3, Chen Yu2,*, Haotian Han3, Haobo Zhang3, Shuting Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1103-1137, 2024, DOI:10.32604/cmes.2023.029177

    Abstract This paper aims to solve large-scale and complex isogeometric topology optimization problems that consume significant computational resources. A novel isogeometric topology optimization method with a hybrid parallel strategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equation solving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency of CPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload between CPU and GPU. To illustrate the advantages of the proposed method, three benchmark examples are tested to verify the hybrid parallel strategy in this paper. The results… More > Graphic Abstract

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

  • Open Access

    ARTICLE

    Multi-Material Topology Optimization for Spatial-Varying Porous Structures

    Chengwan Zhang1, Kai Long1,*, Zhuo Chen1,2, Xiaoyu Yang1, Feiyu Lu1, Jinhua Zhang3, Zunyi Duan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 369-390, 2024, DOI:10.32604/cmes.2023.029876

    Abstract This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials. The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass, as well as the local volume fraction of all phases. The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function, avoiding the parameter dependence in the conventional aggregation process. Furthermore, the local volume percentage can be precisely satisfied. The effects including the global mass bound, the influence radius and local volume percentage… More >

Displaying 1-10 on page 1 of 87. Per Page