Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (233)
  • Open Access

    REVIEW

    A Survey of Federated Learning: Advances in Architecture, Synchronization, and Security Threats

    Faisal Mahmud1, Fahim Mahmud2, Rashedur M. Rahman1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073519 - 12 January 2026

    Abstract Federated Learning (FL) has become a leading decentralized solution that enables multiple clients to train a model in a collaborative environment without directly sharing raw data, making it suitable for privacy-sensitive applications such as healthcare, finance, and smart systems. As the field continues to evolve, the research field has become more complex and scattered, covering different system designs, training methods, and privacy techniques. This survey is organized around the three core challenges: how the data is distributed, how models are synchronized, and how to defend against attacks. It provides a structured and up-to-date review of… More >

  • Open Access

    ARTICLE

    Deep Retraining Approach for Category-Specific 3D Reconstruction Models from a Single 2D Image

    Nour El Houda Kaiber1, Tahar Mekhaznia1, Akram Bennour1,*, Mohammed Al-Sarem2,3,*, Zakaria Lakhdara4, Fahad Ghaban2, Mohammad Nassef5,6

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070337 - 12 January 2026

    Abstract The generation of high-quality 3D models from single 2D images remains challenging in terms of accuracy and completeness. Deep learning has emerged as a promising solution, offering new avenues for improvements. However, building models from scratch is computationally expensive and requires large datasets. This paper presents a transfer-learning-based approach for category-specific 3D reconstruction from a single 2D image. The core idea is to fine-tune a pre-trained model on specific object categories using new, unseen data, resulting in specialized versions of the model that are better adapted to reconstruct particular objects. The proposed approach utilizes a… More >

  • Open Access

    ARTICLE

    X-MalNet: A CNN-Based Malware Detection Model with Visual and Structural Interpretability

    Kirubavathi Ganapathiyappan1, Heba G. Mohamed2, Abhishek Yadav1, Guru Akshya Chinnaswamy1, Ateeq Ur Rehman3,*, Habib Hamam4,5,6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069951 - 09 December 2025

    Abstract The escalating complexity of modern malware continues to undermine the effectiveness of traditional signature-based detection techniques, which are often unable to adapt to rapidly evolving attack patterns. To address these challenges, this study proposes X-MalNet, a lightweight Convolutional Neural Network (CNN) framework designed for static malware classification through image-based representations of binary executables. By converting malware binaries into grayscale images, the model extracts distinctive structural and texture-level features that signify malicious intent, thereby eliminating the dependence on manual feature engineering or dynamic behavioral analysis. Built upon a modified AlexNet architecture, X-MalNet employs transfer learning to… More >

  • Open Access

    ARTICLE

    Cross-Dataset Transformer-IDS with Calibration and AUC Optimization (Evaluated on NSL-KDD, UNSW-NB15, CIC-IDS2017)

    Chaonan Xin*, Keqing Xu

    Journal of Cyber Security, Vol.7, pp. 483-503, 2025, DOI:10.32604/jcs.2025.071627 - 28 November 2025

    Abstract Intrusion Detection Systems (IDS) have achieved high accuracy on benchmark datasets, yet models often fail to generalize across different network environments. In this paper, we propose Transformer-IDS, a transformer-based network intrusion detection model designed for cross-dataset generalization. The model incorporates a classification token, multi-head self-attention, and embedding layers to learn versatile features, and it introduces a calibration module and an AUC-oriented optimization objective to improve reliability and ranking performance. We evaluate Transformer-IDS on three prominent datasets (NSL-KDD, UNSW-NB15, CIC-IDS2017) in both within-dataset and cross-dataset scenarios. Results demonstrate that while conventional deep IDS models (e.g., CNN-LSTM More >

  • Open Access

    ARTICLE

    Advancing Radiological Dermatology with an Optimized Ensemble Deep Learning Model for Skin Lesion Classification

    Adeel Akram1, Tallha Akram2, Ghada Atteia3,*, Ayman Qahmash4, Sultan Alanazi5, Faisal Mohammad Alotaibi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2311-2337, 2025, DOI:10.32604/cmes.2025.069697 - 26 November 2025

    Abstract Advancements in radiation-based imaging and computational intelligence have significantly improved medical diagnostics, particularly in dermatology. This study presents an ensemble-based skin lesion classification framework that integrates deep neural networks (DNNs) with transfer learning, a customized DNN, and an optimized self-learning binary differential evolution (SLBDE) algorithm for feature selection and fusion. Leveraging computational techniques alongside medical imaging modalities, the proposed framework extracts and fuses discriminative features from multiple pre-trained models to improve classification robustness. The methodology is evaluated on benchmark datasets, including ISIC 2017 and the Argentina Skin Lesion dataset, demonstrating superior accuracy, precision, and F1-score… More >

  • Open Access

    ARTICLE

    Hybrid Attention-Driven Transfer Learning with DSCNN for Cross-Domain Bearing Fault Diagnosis under Variable Operating Conditions

    Qiang Ma1,2,3,4, Zepeng Li1,2, Kai Yang1,2,*, Shaofeng Zhang1,2, Zhuopei Wei1,2

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1607-1634, 2025, DOI:10.32604/sdhm.2025.069876 - 17 November 2025

    Abstract Effective fault identification is crucial for bearings, which are critical components of mechanical systems and play a pivotal role in ensuring overall safety and operational efficiency. Bearings operate under variable service conditions, and their diagnostic environments are complex and dynamic. In the process of bearing diagnosis, fault datasets are relatively scarce compared with datasets representing normal operating conditions. These challenges frequently cause the practicality of fault detection to decline, the extraction of fault features to be incomplete, and the diagnostic accuracy of many existing models to decrease. In this work, a transfer-learning framework, designated DSCNN-HA-TL,… More >

  • Open Access

    ARTICLE

    Leveraging Segmentation for Potato Plant Disease Severity Estimation and Classification via CBAM-EfficientNetB0 Transfer Learning

    Amit Prakash Singh1, Kajal Kaul1,*, Anuradha Chug1, Ravinder Kumar2, Veerubommu Shanmugam2

    Journal on Artificial Intelligence, Vol.7, pp. 451-468, 2025, DOI:10.32604/jai.2025.070773 - 06 November 2025

    Abstract In agricultural farms in India where the staple diet for most of the households is potato, plant leaf diseases, namely Potato Early Blight (PEB) and Potato Late Blight (PLB), are quite common. The class label Plant Healthy (PH) is also used. If these diseases are not identified early, they can cause massive crop loss and thereby incur huge economic losses to the farmers in the agricultural domain and can impact the gross domestic product of the nation. This paper presents a hybrid approach for potato plant disease severity estimation and classification of diseased and healthy… More >

  • Open Access

    ARTICLE

    Grid-Supplied Load Prediction under Extreme Weather Conditions Based on CNN-BiLSTM-Attention Model with Transfer Learning

    Qingliang Wang1, Chengkai Liu1, Zhaohui Zhou1, Ye Han1, Luebin Fang2, Moxuan Zhao3, Xiao Cao3,*

    Energy Engineering, Vol.122, No.11, pp. 4715-4732, 2025, DOI:10.32604/ee.2025.068105 - 27 October 2025

    Abstract Grid-supplied load is the traditional load minus new energy generation, so grid-supplied load forecasting is challenged by uncertainties associated with the total energy demand and the energy generated off-grid. In addition, with the expansion of the power system and the increase in the frequency of extreme weather events, the difficulty of grid-supplied load forecasting is further exacerbated. Traditional statistical methods struggle to capture the dynamic characteristics of grid-supplied load, especially under extreme weather conditions. This paper proposes a novel grid-supplied load prediction model based on Convolutional Neural Network-Bidirectional LSTM-Attention mechanism (CNN-BiLSTM-Attention). The model utilizes transfer… More >

  • Open Access

    ARTICLE

    A Hybrid Model of Transfer Learning and Convolutional Neural Networks for Accurate Coffee Leaf Miner (CLM) Classification

    Nameer Baht1,*, Enrique Domínguez1,2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4441-4455, 2025, DOI:10.32604/cmc.2025.069528 - 23 October 2025

    Abstract Coffee is an important agricultural commodity, and its production is threatened by various diseases. It is also a source of concern for coffee-exporting countries, which is causing them to rethink their strategies for the future. Maintaining crop production requires early diagnosis. Notably, Coffee Leaf Miner (CLM) Machine learning (ML) offers promising tools for automated disease detection. Early detection of CLM is crucial for minimising yield losses. However, this study explores the effectiveness of using Convolutional Neural Networks (CNNs) with transfer learning algorithms ResNet50, DenseNet121, MobileNet, Inception, and hybrid VGG19 for classifying coffee leaf images as… More >

  • Open Access

    ARTICLE

    Transfer Learning-Based Approach with an Ensemble Classifier for Detecting Keylogging Attack on the Internet of Things

    Yahya Alhaj Maz1, Mohammed Anbar1, Selvakumar Manickam1,*, Mosleh M. Abualhaj2, Sultan Ahmed Almalki3, Basim Ahmad Alabsi4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5287-5307, 2025, DOI:10.32604/cmc.2025.068257 - 23 October 2025

    Abstract The Internet of Things (IoT) is an innovation that combines imagined space with the actual world on a single platform. Because of the recent rapid rise of IoT devices, there has been a lack of standards, leading to a massive increase in unprotected devices connecting to networks. Consequently, cyberattacks on IoT are becoming more common, particularly keylogging attacks, which are often caused by security vulnerabilities on IoT networks. This research focuses on the role of transfer learning and ensemble classifiers in enhancing the detection of keylogging attacks within small, imbalanced IoT datasets. The authors propose… More >

Displaying 1-10 on page 1 of 233. Per Page