Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (205)
  • Open Access

    ARTICLE

    A Novel Dynamic Residual Self-Attention Transfer Adaptive Learning Fusion Approach for Brain Tumor Diagnosis

    Tawfeeq Shawly1, Ahmed A. Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4161-4179, 2025, DOI:10.32604/cmc.2025.061497 - 06 March 2025

    Abstract A healthy brain is vital to every person since the brain controls every movement and emotion. Sometimes, some brain cells grow unexpectedly to be uncontrollable and cancerous. These cancerous cells are called brain tumors. For diagnosed patients, their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans. Nowadays, Physicians and radiologists rely on Magnetic Resonance Imaging (MRI) pictures for their clinical evaluations of brain tumors. These evaluations are time-consuming, expensive, and require expertise with high skills to provide an accurate diagnosis. Scholars and industrials have recently partnered to implement… More >

  • Open Access

    ARTICLE

    Improved Leaf Chlorophyll Content Estimation with Deep Learning and Feature Optimization Using Hyperspectral Measurements

    Xianfeng Zhou1,2,*, Ruiju Sun1, Zhaojie Zhang1, Yuanyuan Song1, Lijiao Jin1, Lin Yuan3

    Phyton-International Journal of Experimental Botany, Vol.94, No.2, pp. 503-519, 2025, DOI:10.32604/phyton.2025.060827 - 06 March 2025

    Abstract An accurate and robust estimation of leaf chlorophyll content (LCC) is very important to better know the process of material and energy exchange between plants and the environment. Compared with traditional remote sensing methods, abundant research has made progress in agronomic parameter retrieval using different CNN frameworks. Nevertheless, limited reports have paid attention to the problems, i.e., limited measured data, hyperspectral redundancy, and model convergence issues, when concerning CNN models for parameter estimation. Therefore, the present study tried to analyze the effects of synthetic data size expansion employing a Gaussian process regression (GPR) model for… More >

  • Open Access

    ARTICLE

    EFI-SATL: An EfficientNet and Self-Attention Based Biometric Recognition for Finger-Vein Using Deep Transfer Learning

    Manjit Singh, Sunil Kumar Singla*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3003-3029, 2025, DOI:10.32604/cmes.2025.060863 - 03 March 2025

    Abstract Deep Learning-based systems for Finger vein recognition have gained rising attention in recent years due to improved efficiency and enhanced security. The performance of existing CNN-based methods is limited by the puny generalization of learned features and deficiency of the finger vein image training data. Considering the concerns of existing methods, in this work, a simplified deep transfer learning-based framework for finger-vein recognition is developed using an EfficientNet model of deep learning with a self-attention mechanism. Data augmentation using various geometrical methods is employed to address the problem of training data shortage required for a… More > Graphic Abstract

    EFI-SATL: An EfficientNet and Self-Attention Based Biometric Recognition for Finger-Vein Using Deep Transfer Learning

  • Open Access

    ARTICLE

    A Hybrid Transfer Learning Framework for Enhanced Oil Production Time Series Forecasting

    Dalal AL-Alimi1, Mohammed A. A. Al-qaness2,3,*, Robertas Damaševičius4,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3539-3561, 2025, DOI:10.32604/cmc.2025.059869 - 17 February 2025

    Abstract Accurate forecasting of oil production is essential for optimizing resource management and minimizing operational risks in the energy sector. Traditional time-series forecasting techniques, despite their widespread application, often encounter difficulties in handling the complexities of oil production data, which is characterized by non-linear patterns, skewed distributions, and the presence of outliers. To overcome these limitations, deep learning methods have emerged as more robust alternatives. However, while deep neural networks offer improved accuracy, they demand substantial amounts of data for effective training. Conversely, shallow networks with fewer layers lack the capacity to model complex data distributions… More >

  • Open Access

    ARTICLE

    APWF: A Parallel Website Fingerprinting Attack with Attention Mechanism

    Dawei Xu1,2,3, Min Wang1, Yue Lv1, Moxuan Fu2, Yi Wu4,5,*, Jian Zhao1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2027-2041, 2025, DOI:10.32604/cmc.2024.058178 - 17 February 2025

    Abstract Website fingerprinting (WF) attacks can reveal information about the websites users browse by de-anonymizing encrypted traffic. Traditional website fingerprinting attack models, focusing solely on a single spatial feature, are inefficient regarding training time. When confronted with the concept drift problem, they suffer from a sharp drop in attack accuracy within a short period due to their reliance on extensive, outdated training data. To address the above problems, this paper proposes a parallel website fingerprinting attack (APWF) that incorporates an attention mechanism, which consists of an attack model and a fine-tuning method. Among them, the APWF… More >

  • Open Access

    ARTICLE

    Diagnosing Retinal Eye Diseases: A Novel Transfer Learning Approach

    Mohammed Salih Ahmed1, Atta Rahman2,*, Yahya Alhabboub1, Khalid Alzahrani1, Hassan Baragbah1, Basel Altaha1, Hussein Alkatout1, Sardar Asad Ali Biabani3,4, Rashad Ahmed5, Aghiad Bakry2

    Intelligent Automation & Soft Computing, Vol.40, pp. 149-175, 2025, DOI:10.32604/iasc.2025.059080 - 12 February 2025

    Abstract This study rigorously evaluates the potential of transfer learning in diagnosing retinal eye diseases using advanced models such as YOLOv8, Xception, ConvNeXtTiny, and VGG16. All models were trained on the esteemed RFMiD dataset, which includes images classified into six critical categories: Diabetic Retinopathy (DR), Macular Hole (MH), Diabetic Neuropathy (DN), Optic Disc Changes (ODC), Tesselated Fundus (TSLN), and normal cases. The research emphasizes enhancing model performance by prioritizing recall metrics, a crucial strategy aimed at minimizing false negatives in medical diagnostics. To address the challenge of imbalanced data, we implemented effective preprocessing techniques, including cropping,… More >

  • Open Access

    ARTICLE

    Steel Surface Defect Recognition in Smart Manufacturing Using Deep Ensemble Transfer Learning-Based Techniques

    Tajmal Hussain, Jongwon Seok*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 231-250, 2025, DOI:10.32604/cmes.2024.056621 - 17 December 2024

    Abstract Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence (AI) and internet of things (IoT) to enhance efficiency, reduce costs, and ensure product quality. In light of the recent advancement of Industry 4.0, identifying defects has become important for ensuring the quality of products during the manufacturing process. In this research, we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network (CNN) architectures: VGG16, VGG19, Xception, and Mobile-Net V2, compensating for their… More >

  • Open Access

    ARTICLE

    Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate

    Suganya Athisayamani1, A. Robert Singh2, Gyanendra Prasad Joshi3, Woong Cho4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 155-183, 2025, DOI:10.32604/cmes.2024.056129 - 17 December 2024

    Abstract In radiology, magnetic resonance imaging (MRI) is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures. MRI is particularly effective for detecting soft tissue anomalies. Traditionally, radiologists manually interpret these images, which can be labor-intensive and time-consuming due to the vast amount of data. To address this challenge, machine learning, and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans. This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods. There are three… More >

  • Open Access

    ARTICLE

    A Scalable and Generalized Deep Ensemble Model for Road Anomaly Detection in Surveillance Videos

    Sarfaraz Natha1,2,*, Fareed A. Jokhio1, Mehwish Laghari1, Mohammad Siraj3,*, Saif A. Alsaif3, Usman Ashraf4, Asghar Ali5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3707-3729, 2024, DOI:10.32604/cmc.2024.057684 - 19 December 2024

    Abstract Surveillance cameras have been widely used for monitoring in both private and public sectors as a security measure. Close Circuits Television (CCTV) Cameras are used to surveillance and monitor the normal and anomalous incidents. Real-world anomaly detection is a significant challenge due to its complex and diverse nature. It is difficult to manually analyze because vast amounts of video data have been generated through surveillance systems, and the need for automated techniques has been raised to enhance detection accuracy. This paper proposes a novel deep-stacked ensemble model integrated with a data augmentation approach called Stack… More >

  • Open Access

    ARTICLE

    A Fusion Model for Personalized Adaptive Multi-Product Recommendation System Using Transfer Learning and Bi-GRU

    Buchi Reddy Ramakantha Reddy, Ramasamy Lokesh Kumar*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4081-4107, 2024, DOI:10.32604/cmc.2024.057071 - 19 December 2024

    Abstract Traditional e-commerce recommendation systems often struggle with dynamic user preferences and a vast array of products, leading to suboptimal user experiences. To address this, our study presents a Personalized Adaptive Multi-Product Recommendation System (PAMR) leveraging transfer learning and Bi-GRU (Bidirectional Gated Recurrent Units). Using a large dataset of user reviews from Amazon and Flipkart, we employ transfer learning with pre-trained models (AlexNet, GoogleNet, ResNet-50) to extract high-level attributes from product data, ensuring effective feature representation even with limited data. Bi-GRU captures both spatial and sequential dependencies in user-item interactions. The innovation of this study lies… More >

Displaying 1-10 on page 1 of 205. Per Page